Join us on YugabyteDB Community Slack
Star us on
Get Started
Slack
GitHub
Get Started
v2.13 (latest) v2.12 (stable) v2.8 (earlier version) v2.6 (earlier version) v2.4 (earlier version) v2.2 (earlier version) v2.1 (earlier version) v2.0 (earlier version) v1.3 (earlier version)
  • YUGABYTEDB CORE
    • Quick start
      • 1. Install YugabyteDB
      • 2. Create a local cluster
      • 3. Explore distributed SQL
      • 4. Build an application
        • Java
        • Node.js
        • Go
        • Python
        • Ruby
        • C#
        • PHP
        • C++
        • C
        • Scala
    • Explore
      • SQL features
        • Schemas and Tables
        • Data Types
        • Data Manipulation
        • Queries and Joins
        • Expressions and Operators
        • Stored Procedures
        • Triggers
        • Advanced features
          • Cursors
          • Table Partitioning
          • Views
          • Savepoints
          • Collations
          • Extensions
        • Going beyond SQL
          • Follower reads
          • Tablespaces
      • Fault tolerance
      • Horizontal scalability
        • Scaling Transactions
        • Sharding Data
      • Transactions
        • Distributed Transactions
        • Isolation Levels
        • Explicit Locking
      • Indexes and Constraints
        • Overview
        • Unique Indexes
        • Partial Indexes
        • Expression Indexes
        • Generalized Inverted Indexes
        • Primary Key
        • Foreign Key
        • Other Constraints
      • JSON support
      • Multi-region deployments
        • Sync replication (3+ regions)
        • Async Replication (2+ regions)
        • Row-Level Geo-Partitioning
        • Read replicas
      • Query tuning
        • Introduction
        • Get query statistics using pg_stat_statements
        • Viewing live queries with pg_stat_activity
        • Analyzing queries with EXPLAIN
        • Optimizing YSQL queries using pg_hint_plan
      • Cluster management
        • Point-in-time recovery
      • Security
      • Observability
        • Prometheus Integration
        • Grafana Dashboard
    • Develop
      • Learn app development
        • 1. SQL vs NoSQL
        • 2. Data modeling
        • 3. Data types
        • 4. ACID transactions
        • 5. Aggregations
        • 6. Batch operations
        • 7. Date and time
        • 8. Strings and text
        • 9. TTL for data expiration
      • Real-world examples
        • E-Commerce app
        • IoT fleet management
      • Explore sample apps
      • Best practices
      • Cloud-native development
        • Codespaces
        • Gitpod
    • Migrate
      • Migration process overview
      • Migrate from PostgreSQL
        • Convert a PostgreSQL schema
        • Migrate a PostgreSQL application
        • Export PostgreSQL data
        • Prepare a cluster
        • Import PostgreSQL data
        • Verify Migration
    • Deploy
      • Deployment checklist
      • Manual deployment
        • 1. System configuration
        • 2. Install software
        • 3. Start YB-Masters
        • 4. Start YB-TServers
        • 5. Verify deployment
      • Kubernetes
        • Single-zone
          • Open Source
          • Amazon EKS
          • Google Kubernetes Engine
          • Azure Kubernetes Service
        • Multi-zone
          • Amazon EKS
          • Google Kubernetes Engine
        • Multi-cluster
          • Google Kubernetes Engine
        • Best practices
        • Connect Clients
      • Docker
      • Public clouds
        • Amazon Web Services
        • Google Cloud Platform
        • Microsoft Azure
      • Multi-DC deployments
        • Three+ data center (3DC)
        • Asynchronous Replication
        • Read replica clusters
    • Benchmark
      • TPC-C
      • sysbench
      • YCSB
      • Key-value workload
      • Large datasets
      • Scalability
        • Scaling queries
      • Resilience
        • Jepsen testing
      • Performance Troubleshooting
    • Secure
      • Security checklist
      • Enable Authentication
        • Enable User Authentication
        • Configure ysql_hba_conf_csv
      • Authentication Methods
        • Password Authentication
        • LDAP Authentication
        • Host-Based Authentication
        • Trust Authentication
      • Role-Based Access Control
        • Overview
        • Manage Users and Roles
        • Grant Privileges
        • Row-Level Security (RLS)
        • Column-Level Security
      • Encryption in Transit
        • Create server certificates
        • Enable server-to-server encryption
        • Enable client-to-server encryption
        • Connect to Clusters
        • TLS and authentication
      • Encryption at rest
      • Column-level encryption
      • Audit Logging
        • Configure Audit Logging
        • Session-Level Audit Logging
        • Object-Level Audit Logging
      • Vulnerability disclosure policy
    • Manage
      • Back up and restore
        • Back up data
        • Restore data
        • Point-in-time recovery
        • Snapshot and restore data
      • Migrate data
        • Bulk import
        • Bulk export
      • Change cluster configuration
      • Diagnostics reporting
      • Upgrade a deployment
      • Grow cluster
    • Troubleshoot
      • Troubleshooting
      • Cluster level issues
        • YCQL connection issues
        • YEDIS connection Issues
        • Recover tserver/master
        • Replace a failed YB-TServer
        • Replace a failed YB-Master
        • Manual remote bootstrap when a majority of peers fail
      • Node level issues
        • Check servers
        • Inspect logs
        • System statistics
        • Disk failure
        • Common error messages
    • Contribute
      • Core database
        • Contribution checklist
        • Build the source
        • Configure a CLion project
        • Run the tests
        • Coding style
  • YUGABYTE PLATFORM
    • Overview
      • Install
      • Configure
    • Install Yugabyte Platform
      • Prerequisites
      • Prepare the environment
      • Install software
      • Prepare nodes (on-prem)
      • Uninstall software
    • Configure Yugabyte Platform
      • Create admin user
      • Configure the cloud provider
      • Configure the backup target
      • Configure alerts
    • Create deployments
      • Multi-zone universe
      • Multi-region universe
      • Multi-cloud universe
      • Read replica cluster
      • Asynchronous replication
    • Manage deployments
      • Start and stop processes
      • Add a node
      • Eliminate an unresponsive node
      • Enable high availability
      • Edit configuration flags
      • Edit a universe
      • Delete a universe
      • Configure instance tags
      • Upgrade YugabyteDB software
      • Migrate to Helm 3
    • Back up universes
      • Configure backup storage
      • Back up universe data
      • Restore universe data
      • Schedule data backups
    • Security
      • Security checklist
      • Customize ports
      • LDAP authentication
      • Authorization platform
      • Create a KMS configuration
      • Enable encryption at rest
      • Enable encryption in transit (TLS)
      • Network security
    • Alerts and monitoring
      • Alerts
      • Live Queries dashboard
      • Slow Queries dashboard
    • Troubleshoot
      • Install and upgrade issues
      • Universe issues
    • Administer Yugabyte Platform
      • Back Up Yugabyte Platform
      • Authenticate with LDAP
    • Upgrade Yugabyte Platform
      • Upgrade using Replicated
  • YUGABYTE CLOUD
    • Overview
    • Quick start
      • Create a free cluster
      • Connect to the cluster
      • Create a database
      • Explore distributed SQL
      • Build an application
        • Before you begin
        • Java
        • Go
        • Python
        • Node.js
        • C
        • C++
        • C#
        • Ruby
        • Rust
        • PHP
    • Deploy clusters
      • Planning a cluster
      • Create a free cluster
      • Create a standard cluster
      • VPC network
        • Overview
        • Set up a VPC network
        • VPCs
        • Peering Connections
    • Secure clusters
      • IP allow lists
      • Database authorization
      • Add database users
      • Encryption in transit
      • Audit cloud activity
    • Connect to clusters
      • Cloud Shell
      • Client shell
      • Connect applications
    • Alerts and monitoring
      • Alerts
      • Performance metrics
      • Live queries
      • Slow YSQL queries
      • Cluster activity
    • Manage clusters
      • Backup and restore
      • Scale and configure clusters
      • Create extensions
    • Administer Yugabyte Cloud
      • Manage cloud users
      • Manage billing
      • Cluster costs
    • Example applications
      • Connect a Spring application
      • Connect a YCQL Java application
      • Hasura Cloud
      • Deploy a GraphQL application
    • Security architecture
      • Security architecture
      • Shared responsibility model
    • Troubleshoot
    • Yugabyte Cloud FAQ
    • What's new
  • INTEGRATIONS
    • Apache Kafka
    • Apache Spark
    • JanusGraph
    • KairosDB
    • Presto
    • Metabase
    • WSO2 Identity Server
    • YSQL Loader
    • Yugabyte JDBC Driver
    • Prisma
    • Hasura
      • Application Development
      • Benchmarking
    • Spring Framework
      • Spring Data YugabyteDB
      • Spring Data Cassandra
    • Flyway
    • GORM
    • Liquibase
    • Sequelize
    • SQLAlchemy
    • Entity Framework
    • Django REST framework
  • REFERENCE
    • Architecture
      • Design goals
      • Key concepts
        • Universe
        • YB-TServer Service
        • YB-Master Service
      • Core functions
        • Universe creation
        • Table creation
        • Write IO path
        • Read IO path
        • High availability
      • Layered architecture
      • Query layer
        • Overview
      • DocDB transactions layer
        • Transactions overview
        • Transaction isolation levels
        • Explicit locking
        • Read Committed
        • Single-row transactions
        • Distributed transactions
        • Transactional IO path
      • DocDB sharding layer
        • Hash & range sharding
        • Tablet splitting
        • Colocated tables
      • DocDB replication layer
        • Replication
        • xCluster replication
        • Read replicas
        • Change data capture (CDC)
      • DocDB storage layer
        • Persistence
        • Performance
    • APIs
      • YSQL
        • The SQL language
          • SQL statements
            • ABORT
            • ALTER DATABASE
            • ALTER DEFAULT PRIVILEGES
            • ALTER DOMAIN
            • ALTER GROUP
            • ALTER POLICY
            • ALTER ROLE
            • ALTER SEQUENCE
            • ALTER TABLE
            • ALTER USER
            • ANALYZE
            • BEGIN
            • CALL
            • COMMENT
            • COMMIT
            • COPY
            • CREATE AGGREGATE
            • CREATE CAST
            • CREATE DATABASE
            • CREATE DOMAIN
            • CREATE EXTENSION
            • CREATE FUNCTION
            • CREATE GROUP
            • CREATE INDEX
            • CREATE MATERIALIZED VIEW
            • CREATE OPERATOR
            • CREATE OPERATOR CLASS
            • CREATE POLICY
            • CREATE PROCEDURE
            • CREATE ROLE
            • CREATE RULE
            • CREATE SCHEMA
            • CREATE SEQUENCE
            • CREATE TABLE
            • CREATE TABLE AS
            • CREATE TRIGGER
            • CREATE TYPE
            • CREATE USER
            • CREATE VIEW
            • DEALLOCATE
            • DELETE
            • DO
            • DROP AGGREGATE
            • DROP CAST
            • DROP DATABASE
            • DROP DOMAIN
            • DROP EXTENSION
            • DROP FUNCTION
            • DROP GROUP
            • DROP MATERIALIZED VIEW
            • DROP OPERATOR
            • DROP OPERATOR CLASS
            • DROP OWNED
            • DROP POLICY
            • DROP PROCEDURE
            • DROP ROLE
            • DROP RULE
            • DROP SEQUENCE
            • DROP TABLE
            • DROP TRIGGER
            • DROP TYPE
            • DROP USER
            • END
            • EXECUTE
            • EXPLAIN
            • GRANT
            • INSERT
            • LOCK
            • PREPARE
            • REASSIGN OWNED
            • REFRESH MATERIALIZED VIEW
            • RELEASE SAVEPOINT
            • RESET
            • REVOKE
            • ROLLBACK
            • ROLLBACK TO SAVEPOINT
            • SAVEPOINT
            • SELECT
            • SET
            • SET CONSTRAINTS
            • SET ROLE
            • SET SESSION AUTHORIZATION
            • SET TRANSACTION
            • SHOW
            • SHOW TRANSACTION
            • TRUNCATE
            • UPDATE
            • VALUES
          • WITH clause
            • WITH clause—SQL syntax and semantics
            • recursive CTE
            • case study—traversing an employee hierarchy
            • traversing general graphs
              • graph representation
              • common code
              • undirected cyclic graph
              • directed cyclic graph
              • directed acyclic graph
              • rooted tree
              • Unique containing paths
              • Stress testing find_paths()
            • case study—Bacon Numbers from IMDb
              • Bacon numbers for synthetic data
              • Bacon numbers for IMDb data
        • Data types
          • Array
            • array[] constructor
            • Literals
              • Text typecasting and literals
              • Array of primitive values
              • Row
              • Array of rows
            • FOREACH loop (PL/pgSQL)
            • array of DOMAINs
            • Functions and operators
              • ANY and ALL
              • Array comparison
              • Array slice operator
              • Array concatenation
              • Array properties
              • array_agg(), unnest(), generate_subscripts()
              • array_fill()
              • array_position(), array_positions()
              • array_remove()
              • array_replace() / set value
              • array_to_string()
              • string_to_array()
          • Binary
          • Boolean
          • Character
          • Date and time
            • Conceptual background
            • Timezones and UTC offsets
              • Catalog views
              • Extended_timezone_names
                • Unrestricted full projection
                • Real timezones with DST
                • Real timezones no DST
                • Synthetic timezones no DST
              • Offset/timezone-sensitive operations
                • Timestamptz to/from timestamp conversion
                • Pure 'day' interval arithmetic
              • Four ways to specify offset
                • Name-resolution rules
                  • 1 case-insensitive resolution
                  • 2 ~names.abbrev never searched
                  • 3 'set timezone' string not resolved in ~abbrevs.abbrev
                  • 4 ~abbrevs.abbrev before ~names.name
                  • Helper functions
              • Syntax contexts for offset
              • Recommended practice
            • Typecasting between date-time and text-values
            • Semantics of the date-time data types
              • Date data type
              • Time data type
              • Plain timestamp and timestamptz
              • Interval data type
                • Interval representation
                  • Ad hoc examples
                  • Representation model
                • Interval value limits
                • Declaring intervals
                • Justify() and extract(epoch...)
                • Interval arithmetic
                  • Interval-interval comparison
                  • Interval-interval addition and subtraction
                  • Interval-number multiplication
                  • Moment-moment overloads of "-"
                  • Moment-interval overloads of "+" and "-"
                • Custom interval domains
                • Interval utility functions
            • Typecasting between date-time datatypes
            • Operators
              • Test comparison overloads
              • Test addition overloads
              • Test subtraction overloads
              • Test multiplication overloads
              • Test division overloads
            • General-purpose functions
              • Creating date-time values
              • Manipulating date-time values
              • Current date-time moment
              • Delaying execution
              • Miscellaneous
                • Function age()
                • Function extract() | date_part()
                • Implementations that model the overlaps operator
            • Formatting functions
            • Case study—SQL stopwatch
            • Download & install the date-time utilities
            • ToC
          • JSON
            • JSON literals
            • Primitive and compound data types
            • Code example conventions
            • Indexes and check constraints
            • Functions & operators
              • ::jsonb, ::json, ::text (typecast)
              • ->, ->>, #>, #>> (JSON subvalues)
              • - and #- (remove)
              • || (concatenation)
              • = (equality)
              • @> and <@ (containment)
              • ? and ?| and ?& (key or value existence)
              • array_to_json()
              • jsonb_agg()
              • jsonb_array_elements()
              • jsonb_array_elements_text()
              • jsonb_array_length()
              • jsonb_build_object()
              • jsonb_build_array()
              • jsonb_each()
              • jsonb_each_text()
              • jsonb_extract_path()
              • jsonb_extract_path_text() and json_extract_path_text()
              • jsonb_object()
              • jsonb_object_agg()
              • jsonb_object_keys()
              • jsonb_populate_record()
              • jsonb_populate_recordset()
              • jsonb_pretty()
              • jsonb_set() and jsonb_insert()
              • jsonb_strip_nulls()
              • jsonb_to_record()
              • jsonb_to_recordset()
              • jsonb_typeof()
              • row_to_json()
              • to_jsonb()
          • Money
          • Numeric
          • Range
          • Serial
          • UUID
        • Functions and operators
          • Aggregate functions
            • Informal functionality overview
            • Invocation syntax and semantics
            • grouping sets, rollup, cube
            • Per function signature and purpose
              • avg(), count(), max(), min(), sum()
              • array_agg(), string_agg(), jsonb_agg(), jsonb_object_agg()
              • bit_and(), bit_or(), bool_and(), bool_or()
              • variance(), var_pop(), var_samp(), stddev(), stddev_pop(), stddev_samp()
              • linear regression
                • covar_pop(), covar_samp(), corr()
                • regr_%()
              • mode(), percentile_disc(), percentile_cont()
              • rank(), dense_rank(), percent_rank(), cume_dist()
            • case study—percentile_cont() and the "68–95–99.7" rule
            • case study—linear regression on COVID data
              • Download the COVIDcast data
              • Ingest the COVIDcast data
                • Inspect the COVIDcast data
                • Copy the .csv files to staging tables
                • Check staged data conforms to the rules
                • Join the staged data into a single table
                • SQL scripts
                  • Create cr_staging_tables()
                  • Create cr_copy_from_scripts()
                  • Create assert_assumptions_ok()
                  • Create xform_to_covidcast_fb_survey_results()
                  • ingest-the-data.sql
              • Analyze the COVIDcast data
                • symptoms vs mask-wearing by day
                • Data for scatter-plot for 21-Oct-2020
                • Scatter-plot for 21-Oct-2020
                • SQL scripts
                  • analysis-queries.sql
                  • synthetic-data.sql
          • currval()
          • lastval()
          • nextval()
          • Window functions
            • Informal functionality overview
            • Invocation syntax and semantics
            • Per function signature and purpose
              • row_number(), rank() and dense_rank()
              • percent_rank(), cume_dist() and ntile()
              • first_value(), nth_value(), last_value()
              • lag(), lead()
              • Tables for the code examples
                • table t1
                • table t2
                • table t3
                • table t4
            • case study—analyzing a normal distribution
              • Bucket allocation scheme
              • do_clean_start.sql
              • cr_show_t4.sql
              • cr_dp_views.sql
              • cr_int_views.sql
              • cr_pr_cd_equality_report.sql
              • cr_bucket_using_width_bucket.sql
              • cr_bucket_dedicated_code.sql
              • do_assert_bucket_ok
              • cr_histogram.sql
              • cr_do_ntile.sql
              • cr_do_percent_rank.sql
              • cr_do_cume_dist.sql
              • do_populate_results.sql
              • do_report_results.sql
              • do_compare_dp_results.sql
              • do_demo.sql
              • Reports
                • Histogram report
                • dp-results
                • compare-dp-results
                • int-results
          • yb_hash_code()
        • Extensions
        • Keywords
        • Reserved names
      • YCQL
        • ALTER KEYSPACE
        • ALTER ROLE
        • ALTER TABLE
        • CREATE INDEX
        • CREATE KEYSPACE
        • CREATE ROLE
        • CREATE TABLE
        • CREATE TYPE
        • DROP INDEX
        • DROP KEYSPACE
        • DROP ROLE
        • DROP TABLE
        • DROP TYPE
        • GRANT PERMISSION
        • GRANT ROLE
        • REVOKE PERMISSION
        • REVOKE ROLE
        • USE
        • INSERT
        • SELECT
        • EXPLAIN
        • UPDATE
        • DELETE
        • TRANSACTION
        • TRUNCATE
        • Simple expressions
        • Subscripted expressions
        • Function call
        • Operators
        • BLOB
        • BOOLEAN
        • Collection
        • FROZEN
        • INET
        • Integer and counter
        • Non-integer
        • TEXT
        • DATE, TIME, and TIMESTAMP
        • UUID and TIMEUUID
        • JSONB
        • Date and time
        • BATCH
    • CLIs
      • yb-ctl
      • yb-docker-ctl
      • ysqlsh
      • ycqlsh
      • yb-admin
      • yb-ts-cli
      • ysql_dump
      • ysql_dumpall
    • Configuration
      • yb-tserver
      • yb-master
      • yugabyted
      • Default ports
    • Drivers
      • Client drivers for YSQL
      • Client drivers for YCQL
    • Connectors
      • Kafka Connect YugabyteDB
    • Third party tools
      • Arctype
      • DBeaver
      • DbSchema
      • pgAdmin
      • SQL Workbench/J
      • TablePlus
      • Visual Studio Code
    • Sample datasets
      • Chinook
      • Northwind
      • PgExercises
      • SportsDB
      • Retail Analytics
  • RELEASES
    • Releases overview
      • v2.13 series (latest)
      • v2.12 series (stable)
      • v2.11 series
      • v2.9 series
      • v2.8 series
      • v2.7 series
      • v2.6 series
      • v2.5 series
      • v2.4 series
      • v2.3 series
      • v2.2 series
      • v2.1 series
      • v2.0 series
      • v1.3 series
      • v1.2 series
    • Release versioning
  • FAQ
    • Comparisons
      • Amazon Aurora
      • Google Cloud Spanner
      • CockroachDB
      • TiDB
      • Vitess
      • MongoDB
      • FoundationDB
      • Amazon DynamoDB
      • Azure Cosmos DB
      • Apache Cassandra
      • PostgreSQL
      • Redis in-memory store
      • Apache HBase
    • General FAQ
    • Operations FAQ
    • API compatibility FAQ
    • Yugabyte Platform FAQ
  • MISC
    • YEDIS
      • Quick start
      • Develop
        • Build an application
        • C#
        • C++
        • Go
        • Java
        • NodeJS
        • Python
      • API reference
        • APPEND
        • AUTH
        • CONFIG
        • CREATEDB
        • DELETEDB
        • LISTDB
        • SELECT
        • DEL
        • ECHO
        • EXISTS
        • EXPIRE
        • EXPIREAT
        • FLUSHALL
        • FLUSHDB
        • GET
        • GETRANGE
        • GETSET
        • HDEL
        • HEXISTS
        • HGET
        • HGETALL
        • HINCRBY
        • HKEYS
        • HLEN
        • HMGET
        • HMSET
        • HSET
        • HSTRLEN
        • HVALS
        • INCR
        • INCRBY
        • KEYS
        • MONITOR
        • PEXPIRE
        • PEXPIREAT
        • PTTL
        • ROLE
        • SADD
        • SCARD
        • RENAME
        • SET
        • SETEX
        • PSETEX
        • SETRANGE
        • SISMEMBER
        • SMEMBERS
        • SREM
        • STRLEN
        • ZRANGE
        • TSADD
        • TSCARD
        • TSGET
        • TSLASTN
        • TSRANGEBYTIME
        • TSREM
        • TSREVRANGEBYTIME
        • TTL
        • ZADD
        • ZCARD
        • ZRANGEBYSCORE
        • ZREM
        • ZREVRANGE
        • ZSCORE
        • PUBSUB
        • PUBLISH
        • SUBSCRIBE
        • UNSUBSCRIBE
        • PSUBSCRIBE
        • PUNSUBSCRIBE
    • Legal
      • Third party software
> Explore > SQL features >

Data Types

Report a doc issue Suggest new content
  • Strings
  • Numeric Types
  • SERIAL Pseudotype
  • Date and Time
  • Arrays
    • 1. Create a table with an array type
    • 2. Insert rows
    • 3. Access arrays
    • 4. Update a single element
    • 5. Update the entire array
    • 6. Search in arrays
  • Enumerations - ENUM Type
    • 1. Create ENUM
    • 2. View the ENUM
    • 2. Create a table with an ENUM column
    • 3. Insert a row with ENUM
  • Composite Types
    • 1. Create a composite type
    • 2. Create table with a composite type
    • 3. Insert a row
    • 4. Select data
  • Range Types

This document describes the data types supported in YSQL, from the basic data types to the SERIAL pseudo-type (for implementing an auto-incrementing primary key column in a table), arrays, composite types, and range types.

The JSONB document data type is described in a separate section.

Strings

The following character types are supported:

  • varchar(n): variable-length string
  • char(n): fixed-length, blank padded
  • text, varchar: variable unlimited length

To test YugabyteDB’s support for character types, create a table that has columns with the following types specified:

CREATE TABLE char_types (
  id serial PRIMARY KEY,
  a CHAR (4),
  b VARCHAR (16),
  c TEXT
);

Insert the following rows into the table:

INSERT INTO char_types (a, b, c) VALUES (
  'foo', 'bar', 'Data for the text column'
);

Numeric Types

The following numeric types are supported:

  • SMALLINT: a 2-byte signed integer that has a range from -32,768 to 32,767.
  • INT: a 4-byte integer that has a range from -2,147,483,648 to 2,147,483,647.
  • float(n): a floating-point number whose precision is at least, n, up to a maximum of 8 bytes
  • real: a 4-byte floating-point number
  • numeric or numeric(p,s): a real number with p digits with s number after the decimal point. The numeric(p,s) is the exact number

The following example creates a table with integer type columns and inserting rows into it:

CREATE TABLE albums (
  album_id SERIAL PRIMARY KEY,
  title VARCHAR (255) NOT NULL,
  play_time SMALLINT NOT NULL,
  library_record INT NOT NULL
);

INSERT INTO albums
values (default,'Funhouse', 3600,2146483645 ),
(default,'Darkside of the Moon', 4200, 214648348);

Similarly, the following example shows how to create a table with floating-point typed columns and how to insert a row into that table:

CREATE TABLE floating_point_test (
  floatn_test float8 not NULL,
  real_test real NOT NULL,
  numeric_test NUMERIC (3, 2)
);

INSERT INTO floating_point_test (floatn_test, real_test, numeric_test)
VALUES
  (9223372036854775807, 2147483647, 5.36),
  (9223372036854775800, 2147483640, 9.99);

SERIAL Pseudotype

In YugabyteDB, just like in PostgreSQL, a sequence is a special kind of database object that generates a sequence of integers. A sequence is often used as the primary key column in a table.

By assigning the SERIAL pseudotype to a column, the following occurs in the background:

  1. The database creates a sequence object and sets the next value generated by the sequence as the default value for the column.
  2. The database adds a NOT NULL constraint to that column because a sequence always generates an integer, which is a non-null value.
  3. The SERIAL column is assigned as the owner of the sequence. This results in the sequence object being deleted when the SERIAL column or table is dropped.

YSQL supports the following pseudotypes:

  • SMALLSERIAL: 2 bytes (1 to 32,767)
  • SERIAL: 4 bytes (1 to 2,147,483,647)
  • BIGSERIAL: 8 bytes (1 to 9,223,372,036,854,775,807)

Date and Time

Temporal data types allow us to store date and time data. The following date and time types are supported in PostgreSQL and YugabyteDB:

  • DATE: stores the dates only
  • TIME: stores the time of day values
  • TIMESTAMP: stores both date and time values
  • TIMESTAMPTZ: is a timezone-aware timestamp data type
  • INTERVAL: stores intervals of time

The following example creates a table with the temporal types:

CREATE TABLE temporal_types (
  date_type DATE,
  time_type TIME,
  timestamp_type TIMESTAMP,
  timestampz_type TIMESTAMPTZ,
  interval_type INTERVAL
);

The following example inserts a row into the table:

INSERT INTO temporal_types (
  date_type, time_type, timestamp_type, timestampz_type, interval_type)
VALUES
  ('2000-06-28', '06:23:00', '2016-06-22 19:10:25-07',
   '2016-06-22 19:10:25-07', '1 year'),
  ('2010-06-28', '12:32:12','2016-06-22 19:10:25-07',
   '2016-06-22 19:10:25-07', '10 years 3 months 5 days');

The following shows the inserted data:

yugabyte=# select * from temporal_types;
 date_type  | time_type |   timestamp_type    |    timestampz_type     |     interval_type
------------+-----------+---------------------+------------------------+------------------------
 2010-06-28 | 12:32:12  | 2016-06-22 19:10:25 | 2016-06-22 19:10:25-07 | 10 years 3 mons 5 days
 2000-06-28 | 06:23:00  | 2016-06-22 19:10:25 | 2016-06-22 19:10:25-07 | 1 year
(2 rows)

Arrays

YSQL supports arrays to hold data of variable length. The type of the data stored in an array can be an inbuilt type, a user-defined type or an enumerated type. The following examples are adapted from Arrays:

1. Create a table with an array type

CREATE TABLE rock_band (
   name text,
   members text[]
);

2. Insert rows

The following shows how to insert a row into the table. Note that the array literals must be double-quoted.

INSERT INTO rock_band VALUES (
  'Led Zeppelin', '{"Page", "Plant", "Jones", "Bonham"}'
);

The following is an alternate syntax using the array constructor. Note that the values must be single-quoted.

INSERT INTO rock_band VALUES (
  'Pink Floyd', ARRAY['Barrett', 'Gilmour']
);

3. Access arrays

SELECT * FROM rock_band;

Expect the following output:

     name     |          members
--------------+---------------------------
 Pink Floyd   | {Barrett,Gilmour}
 Led Zeppelin | {Page,Plant,Jones,Bonham}
(2 rows)

You can access array values using subscripts, as follows:

SELECT name FROM rock_band WHERE members[2] = 'Plant';

Expect the following output:

     name
--------------
 Led Zeppelin
(1 row)

You can also access array values using slices, as follows:

SELECT members[1:2] FROM rock_band;

Expect the following output:

      members
-------------------
 {Barrett,Gilmour}
 {Page,Plant}
(2 rows)

4. Update a single element

UPDATE rock_band SET members[2] = 'Waters' WHERE name = 'Pink Floyd';
select * from rock_band where name = 'Pink Floyd';

Expect the following output:

    name    |     members
------------+------------------
 Pink Floyd | {Barrett,Waters}
(1 row)

5. Update the entire array

UPDATE rock_band SET members = '{"Mason", "Wright", "Gilmour"}'
       WHERE name = 'Pink Floyd';
select * from rock_band where name = 'Pink Floyd';

Expect the following output:

    name    |        members
------------+------------------------
 Pink Floyd | {Mason,Wright,Gilmour}
(1 row)

6. Search in arrays

Use the ANY keyword to search for a particular value in an array, as follows:

SELECT name FROM rock_band WHERE 'Mason' = ANY(members);

Expect the following output:

    name
------------
 Pink Floyd
(1 row)

Enumerations - ENUM Type

YugabyteDB supports the ENUM type in PostgreSQL. The following examples are adapted from Enums:

1. Create ENUM

CREATE TYPE e_contact_method AS ENUM (
  'Email',
  'Sms',
  'Phone');

2. View the ENUM

To view the list of values across all ENUM types, execute the following:

SELECT t.typname, e.enumlabel
  FROM pg_type t, pg_enum e
  WHERE t.oid = e.enumtypid;

The output should be as follows:

     typname      | enumlabel
------------------+-----------
 e_contact_method | Email
 e_contact_method | Sms
 e_contact_method | Phone

2. Create a table with an ENUM column

CREATE TABLE contact_method_info (
   contact_name text,
   contact_method e_contact_method,
   value text
);

3. Insert a row with ENUM

The ENUM should have a valid value, as follows:

INSERT INTO contact_method_info VALUES ('Jeff', 'Email', 'jeff@mail.com')

Execute the following to verify:

yugabyte=# select * from contact_method_info;
 contact_name | contact_method |     value
--------------+----------------+---------------
 Jeff         | Email          | jeff@mail.com
(1 row)

Inserting an invalid ENUM value would fail, as shown in the following example:

yugabyte=# INSERT INTO contact_method_info VALUES ('Jeff', 'Fax', '4563456');

You should see the following error (which is compatible with that of PostgreSQL):

ERROR:  22P02: invalid input value for enum e_contact_method: "Fax"
LINE 1: INSERT INTO contact_method_info VALUES ('Jeff', 'Fax', '4563...

Composite Types

A composite type (also known as a user-defined type) is a collection of data types similar to a struct in a programming language. The examples in this section are adapted from PostgreSQL Data Types:

1. Create a composite type

CREATE TYPE inventory_item AS (
   name text,
   supplier_id integer,
   price numeric
);

2. Create table with a composite type

CREATE TABLE on_hand (
   item inventory_item,
   count integer
);

3. Insert a row

To insert a row, use the ROW keyword, as follows:

INSERT INTO on_hand VALUES (ROW('fuzzy dice', 42, 1.99), 1000);

4. Select data

To select some subfields from the on_hand example table, execute the following:

SELECT (item).name FROM on_hand WHERE (item).price > 0.99;

You can also use the table names, as follows:

SELECT (on_hand.item).name FROM on_hand WHERE (on_hand.item).price > 0.99;

Expect the following output:

    name
------------
 fuzzy dice
(1 row)

Range Types

Range data types represent a range of values of an element type. Range types are usually referred to as the subtype of the range. The subtype needs to follow a strict order because it must be well-defined regardless of the position of element values which can be within, before, or after a value range.

YSQL supports the following range types:

  • tsrange, which corresponds to a range of timestamp without time zone.
  • tstzrange, which corresponds to a range of timestamp with time zone.
  • daterange, which corresponds to a range of date.
  • int4range, which corresponds to a range of integer.
  • int8range, which corresponds to a range of biginteger.
  • numrange, which corresponds to a range of numeric.
  • User-defined types.

The following example shows how to provide a range of time for an employee's vacation:

CREATE TABLE employees (employee_no int, vacation tsrange);
INSERT INTO employees
  VALUES (1227, '[2020-01-01 8:30, 2020-02-02 5:30)');

A non-empty range has a lower bound and an upper bound, with everything between these values included in the range. An inclusive bound indicated by square brackets includes the boundary itself in the range, whereas an exclusive bound indicated by braces excludes the boundary from the range. That is, in the preceding example, the first timestamp is included in the range, and the second timestamp is excluded. If the lower bound is omitted, everything less than the upper bound is included in the range, and if the upper bound is omitted, then everything greater than the lower bound is included in the range. If you omit both bounds, all values of the element type are in the range.

The following is a syntax of an input for a range value, where empty is a representation of a range that does not contain anything:

(lowerbound, upperbound)

(lowerbound, upperbound]

[lowerbound, upperbound)

[lowerbound, upperbound]

empty

lowerbound could be a string of a valid input for the subtype or empty if there is no lower bound. The same logic is applicable to upperbound. You can enclose bound values in double quotes, which is a requirement in cases when the value includes parentheses, brackets, commas, double quotes, backslashes. To define an empty-string value, you use "" (not providing anything is interpreted as defing an infinite bound). You may use whitespaces before and after values, but not between the parentheses or brackets, as this is interpreted as part of the lower or upper bound value.

You can create a range type using a constructor function named identically to the range type. The constructor functions typically have two or three arguments, with the former constructing a range in standard form (lower bound inclusive, upper bound exclusive), and the latter constructing a range with bounds specified by the third argument (one of strings "()", "(]", "[)", or "[]"). The following example shows the constructor with a lower bound, upper bound, and text argument:

SELECT numrange(3.0, 10.0, '(]');

In addition to using built-in range types, you can define your own custom ones. The following example shows how to define a range type of subtype text and use it in a SELECT statement:

CREATE TYPE textrange
  AS RANGE (subtype = text);
SELECT '( " a " " a ", " z " " z " )'::textrange;

For more information on range types, see Range Data Types.

  • Strings
  • Numeric Types
  • SERIAL Pseudotype
  • Date and Time
  • Arrays
    • 1. Create a table with an array type
    • 2. Insert rows
    • 3. Access arrays
    • 4. Update a single element
    • 5. Update the entire array
    • 6. Search in arrays
  • Enumerations - ENUM Type
    • 1. Create ENUM
    • 2. View the ENUM
    • 2. Create a table with an ENUM column
    • 3. Insert a row with ENUM
  • Composite Types
    • 1. Create a composite type
    • 2. Create table with a composite type
    • 3. Insert a row
    • 4. Select data
  • Range Types
Ask our community
  • Slack
  • Github
  • Forum
  • StackOverflow
Yugabyte
Contact Us
Copyright © 2017-2022 Yugabyte, Inc. All rights reserved.