Join us on YugabyteDB Community Slack
Star us on
Get Started
Slack
GitHub
Get Started
v2.13 (latest) v2.12 (stable) v2.8 (earlier version) v2.6 (earlier version) v2.4 (earlier version) v2.2 (earlier version) v2.1 (earlier version) v2.0 (earlier version) v1.3 (earlier version)
  • YUGABYTEDB CORE
    • Quick start
      • 1. Install YugabyteDB
      • 2. Create a local cluster
      • 3. Explore distributed SQL
      • 4. Build an application
        • Java
        • Node.js
        • Go
        • Python
        • Ruby
        • C#
        • PHP
        • C++
        • C
        • Scala
    • Explore
      • SQL features
        • Schemas and Tables
        • Data Types
        • Data Manipulation
        • Queries and Joins
        • Expressions and Operators
        • Stored Procedures
        • Triggers
        • Advanced features
          • Cursors
          • Table Partitioning
          • Views
          • Savepoints
          • Collations
          • Extensions
        • Going beyond SQL
          • Follower reads
          • Tablespaces
      • Fault tolerance
      • Horizontal scalability
        • Scaling Transactions
        • Sharding Data
      • Transactions
        • Distributed Transactions
        • Isolation Levels
        • Explicit Locking
      • Indexes and Constraints
        • Overview
        • Unique Indexes
        • Partial Indexes
        • Expression Indexes
        • Generalized Inverted Indexes
        • Primary Key
        • Foreign Key
        • Other Constraints
      • JSON support
      • Multi-region deployments
        • Sync replication (3+ regions)
        • Async Replication (2+ regions)
        • Row-Level Geo-Partitioning
        • Read replicas
      • Query tuning
        • Introduction
        • Get query statistics using pg_stat_statements
        • Viewing live queries with pg_stat_activity
        • Analyzing queries with EXPLAIN
        • Optimizing YSQL queries using pg_hint_plan
      • Cluster management
        • Point-in-time recovery
      • Security
      • Observability
        • Prometheus Integration
        • Grafana Dashboard
    • Develop
      • Learn app development
        • 1. SQL vs NoSQL
        • 2. Data modeling
        • 3. Data types
        • 4. ACID transactions
        • 5. Aggregations
        • 6. Batch operations
        • 7. Date and time
        • 8. Strings and text
        • 9. TTL for data expiration
      • Real-world examples
        • E-Commerce app
        • IoT fleet management
      • Explore sample apps
      • Best practices
      • Cloud-native development
        • Codespaces
        • Gitpod
    • Migrate
      • Migration process overview
      • Migrate from PostgreSQL
        • Convert a PostgreSQL schema
        • Migrate a PostgreSQL application
        • Export PostgreSQL data
        • Prepare a cluster
        • Import PostgreSQL data
        • Verify Migration
    • Deploy
      • Deployment checklist
      • Manual deployment
        • 1. System configuration
        • 2. Install software
        • 3. Start YB-Masters
        • 4. Start YB-TServers
        • 5. Verify deployment
      • Kubernetes
        • Single-zone
          • Open Source
          • Amazon EKS
          • Google Kubernetes Engine
          • Azure Kubernetes Service
        • Multi-zone
          • Amazon EKS
          • Google Kubernetes Engine
        • Multi-cluster
          • Google Kubernetes Engine
        • Best practices
        • Connect Clients
      • Docker
      • Public clouds
        • Amazon Web Services
        • Google Cloud Platform
        • Microsoft Azure
      • Multi-DC deployments
        • Three+ data center (3DC)
        • Asynchronous Replication
        • Read replica clusters
    • Benchmark
      • TPC-C
      • sysbench
      • YCSB
      • Key-value workload
      • Large datasets
      • Scalability
        • Scaling queries
      • Resilience
        • Jepsen testing
      • Performance Troubleshooting
    • Secure
      • Security checklist
      • Enable Authentication
        • Enable User Authentication
        • Configure ysql_hba_conf_csv
      • Authentication Methods
        • Password Authentication
        • LDAP Authentication
        • Host-Based Authentication
        • Trust Authentication
      • Role-Based Access Control
        • Overview
        • Manage Users and Roles
        • Grant Privileges
        • Row-Level Security (RLS)
        • Column-Level Security
      • Encryption in Transit
        • Create server certificates
        • Enable server-to-server encryption
        • Enable client-to-server encryption
        • Connect to Clusters
        • TLS and authentication
      • Encryption at rest
      • Column-level encryption
      • Audit Logging
        • Configure Audit Logging
        • Session-Level Audit Logging
        • Object-Level Audit Logging
      • Vulnerability disclosure policy
    • Manage
      • Back up and restore
        • Back up data
        • Restore data
        • Point-in-time recovery
        • Snapshot and restore data
      • Migrate data
        • Bulk import
        • Bulk export
      • Change cluster configuration
      • Diagnostics reporting
      • Upgrade a deployment
      • Grow cluster
    • Troubleshoot
      • Troubleshooting
      • Cluster level issues
        • YCQL connection issues
        • YEDIS connection Issues
        • Recover tserver/master
        • Replace a failed YB-TServer
        • Replace a failed YB-Master
        • Manual remote bootstrap when a majority of peers fail
      • Node level issues
        • Check servers
        • Inspect logs
        • System statistics
        • Disk failure
        • Common error messages
    • Contribute
      • Core database
        • Contribution checklist
        • Build the source
        • Configure a CLion project
        • Run the tests
        • Coding style
  • YUGABYTE PLATFORM
    • Overview
      • Install
      • Configure
    • Install Yugabyte Platform
      • Prerequisites
      • Prepare the environment
      • Install software
      • Prepare nodes (on-prem)
      • Uninstall software
    • Configure Yugabyte Platform
      • Create admin user
      • Configure the cloud provider
      • Configure the backup target
      • Configure alerts
    • Create deployments
      • Multi-zone universe
      • Multi-region universe
      • Multi-cloud universe
      • Read replica cluster
      • Asynchronous replication
    • Manage deployments
      • Start and stop processes
      • Add a node
      • Eliminate an unresponsive node
      • Enable high availability
      • Edit configuration flags
      • Edit a universe
      • Delete a universe
      • Configure instance tags
      • Upgrade YugabyteDB software
      • Migrate to Helm 3
    • Back up universes
      • Configure backup storage
      • Back up universe data
      • Restore universe data
      • Schedule data backups
    • Security
      • Security checklist
      • Customize ports
      • LDAP authentication
      • Authorization platform
      • Create a KMS configuration
      • Enable encryption at rest
      • Enable encryption in transit (TLS)
      • Network security
    • Alerts and monitoring
      • Alerts
      • Live Queries dashboard
      • Slow Queries dashboard
    • Troubleshoot
      • Install and upgrade issues
      • Universe issues
    • Administer Yugabyte Platform
      • Back Up Yugabyte Platform
      • Authenticate with LDAP
    • Upgrade Yugabyte Platform
      • Upgrade using Replicated
  • YUGABYTE CLOUD
    • Overview
    • Quick start
      • Create a free cluster
      • Connect to the cluster
      • Create a database
      • Explore distributed SQL
      • Build an application
        • Before you begin
        • Java
        • Go
        • Python
        • Node.js
        • C
        • C++
        • C#
        • Ruby
        • Rust
        • PHP
    • Deploy clusters
      • Planning a cluster
      • Create a free cluster
      • Create a standard cluster
      • VPC network
        • Overview
        • Set up a VPC network
        • VPCs
        • Peering Connections
    • Secure clusters
      • IP allow lists
      • Database authorization
      • Add database users
      • Encryption in transit
      • Audit cloud activity
    • Connect to clusters
      • Cloud Shell
      • Client shell
      • Connect applications
    • Alerts and monitoring
      • Alerts
      • Performance metrics
      • Live queries
      • Slow YSQL queries
      • Cluster activity
    • Manage clusters
      • Backup and restore
      • Scale and configure clusters
      • Create extensions
    • Administer Yugabyte Cloud
      • Manage cloud users
      • Manage billing
      • Cluster costs
    • Example applications
      • Connect a Spring application
      • Connect a YCQL Java application
      • Hasura Cloud
      • Deploy a GraphQL application
    • Security architecture
      • Security architecture
      • Shared responsibility model
    • Troubleshoot
    • Yugabyte Cloud FAQ
    • What's new
  • INTEGRATIONS
    • Apache Kafka
    • Apache Spark
    • JanusGraph
    • KairosDB
    • Presto
    • Metabase
    • WSO2 Identity Server
    • YSQL Loader
    • Yugabyte JDBC Driver
    • Prisma
    • Hasura
      • Application Development
      • Benchmarking
    • Spring Framework
      • Spring Data YugabyteDB
      • Spring Data Cassandra
    • Flyway
    • GORM
    • Liquibase
    • Sequelize
    • SQLAlchemy
    • Entity Framework
    • Django REST framework
  • REFERENCE
    • Architecture
      • Design goals
      • Key concepts
        • Universe
        • YB-TServer Service
        • YB-Master Service
      • Core functions
        • Universe creation
        • Table creation
        • Write IO path
        • Read IO path
        • High availability
      • Layered architecture
      • Query layer
        • Overview
      • DocDB transactions layer
        • Transactions overview
        • Transaction isolation levels
        • Explicit locking
        • Read Committed
        • Single-row transactions
        • Distributed transactions
        • Transactional IO path
      • DocDB sharding layer
        • Hash & range sharding
        • Tablet splitting
        • Colocated tables
      • DocDB replication layer
        • Replication
        • xCluster replication
        • Read replicas
        • Change data capture (CDC)
      • DocDB storage layer
        • Persistence
        • Performance
    • APIs
      • YSQL
        • The SQL language
          • SQL statements
            • ABORT
            • ALTER DATABASE
            • ALTER DEFAULT PRIVILEGES
            • ALTER DOMAIN
            • ALTER GROUP
            • ALTER POLICY
            • ALTER ROLE
            • ALTER SEQUENCE
            • ALTER TABLE
            • ALTER USER
            • ANALYZE
            • BEGIN
            • CALL
            • COMMENT
            • COMMIT
            • COPY
            • CREATE AGGREGATE
            • CREATE CAST
            • CREATE DATABASE
            • CREATE DOMAIN
            • CREATE EXTENSION
            • CREATE FUNCTION
            • CREATE GROUP
            • CREATE INDEX
            • CREATE MATERIALIZED VIEW
            • CREATE OPERATOR
            • CREATE OPERATOR CLASS
            • CREATE POLICY
            • CREATE PROCEDURE
            • CREATE ROLE
            • CREATE RULE
            • CREATE SCHEMA
            • CREATE SEQUENCE
            • CREATE TABLE
            • CREATE TABLE AS
            • CREATE TRIGGER
            • CREATE TYPE
            • CREATE USER
            • CREATE VIEW
            • DEALLOCATE
            • DELETE
            • DO
            • DROP AGGREGATE
            • DROP CAST
            • DROP DATABASE
            • DROP DOMAIN
            • DROP EXTENSION
            • DROP FUNCTION
            • DROP GROUP
            • DROP MATERIALIZED VIEW
            • DROP OPERATOR
            • DROP OPERATOR CLASS
            • DROP OWNED
            • DROP POLICY
            • DROP PROCEDURE
            • DROP ROLE
            • DROP RULE
            • DROP SEQUENCE
            • DROP TABLE
            • DROP TRIGGER
            • DROP TYPE
            • DROP USER
            • END
            • EXECUTE
            • EXPLAIN
            • GRANT
            • INSERT
            • LOCK
            • PREPARE
            • REASSIGN OWNED
            • REFRESH MATERIALIZED VIEW
            • RELEASE SAVEPOINT
            • RESET
            • REVOKE
            • ROLLBACK
            • ROLLBACK TO SAVEPOINT
            • SAVEPOINT
            • SELECT
            • SET
            • SET CONSTRAINTS
            • SET ROLE
            • SET SESSION AUTHORIZATION
            • SET TRANSACTION
            • SHOW
            • SHOW TRANSACTION
            • TRUNCATE
            • UPDATE
            • VALUES
          • WITH clause
            • WITH clause—SQL syntax and semantics
            • recursive CTE
            • case study—traversing an employee hierarchy
            • traversing general graphs
              • graph representation
              • common code
              • undirected cyclic graph
              • directed cyclic graph
              • directed acyclic graph
              • rooted tree
              • Unique containing paths
              • Stress testing find_paths()
            • case study—Bacon Numbers from IMDb
              • Bacon numbers for synthetic data
              • Bacon numbers for IMDb data
        • Data types
          • Array
            • array[] constructor
            • Literals
              • Text typecasting and literals
              • Array of primitive values
              • Row
              • Array of rows
            • FOREACH loop (PL/pgSQL)
            • array of DOMAINs
            • Functions and operators
              • ANY and ALL
              • Array comparison
              • Array slice operator
              • Array concatenation
              • Array properties
              • array_agg(), unnest(), generate_subscripts()
              • array_fill()
              • array_position(), array_positions()
              • array_remove()
              • array_replace() / set value
              • array_to_string()
              • string_to_array()
          • Binary
          • Boolean
          • Character
          • Date and time
            • Conceptual background
            • Timezones and UTC offsets
              • Catalog views
              • Extended_timezone_names
                • Unrestricted full projection
                • Real timezones with DST
                • Real timezones no DST
                • Synthetic timezones no DST
              • Offset/timezone-sensitive operations
                • Timestamptz to/from timestamp conversion
                • Pure 'day' interval arithmetic
              • Four ways to specify offset
                • Name-resolution rules
                  • 1 case-insensitive resolution
                  • 2 ~names.abbrev never searched
                  • 3 'set timezone' string not resolved in ~abbrevs.abbrev
                  • 4 ~abbrevs.abbrev before ~names.name
                  • Helper functions
              • Syntax contexts for offset
              • Recommended practice
            • Typecasting between date-time and text-values
            • Semantics of the date-time data types
              • Date data type
              • Time data type
              • Plain timestamp and timestamptz
              • Interval data type
                • Interval representation
                  • Ad hoc examples
                  • Representation model
                • Interval value limits
                • Declaring intervals
                • Justify() and extract(epoch...)
                • Interval arithmetic
                  • Interval-interval comparison
                  • Interval-interval addition and subtraction
                  • Interval-number multiplication
                  • Moment-moment overloads of "-"
                  • Moment-interval overloads of "+" and "-"
                • Custom interval domains
                • Interval utility functions
            • Typecasting between date-time datatypes
            • Operators
              • Test comparison overloads
              • Test addition overloads
              • Test subtraction overloads
              • Test multiplication overloads
              • Test division overloads
            • General-purpose functions
              • Creating date-time values
              • Manipulating date-time values
              • Current date-time moment
              • Delaying execution
              • Miscellaneous
                • Function age()
                • Function extract() | date_part()
                • Implementations that model the overlaps operator
            • Formatting functions
            • Case study—SQL stopwatch
            • Download & install the date-time utilities
            • ToC
          • JSON
            • JSON literals
            • Primitive and compound data types
            • Code example conventions
            • Indexes and check constraints
            • Functions & operators
              • ::jsonb, ::json, ::text (typecast)
              • ->, ->>, #>, #>> (JSON subvalues)
              • - and #- (remove)
              • || (concatenation)
              • = (equality)
              • @> and <@ (containment)
              • ? and ?| and ?& (key or value existence)
              • array_to_json()
              • jsonb_agg()
              • jsonb_array_elements()
              • jsonb_array_elements_text()
              • jsonb_array_length()
              • jsonb_build_object()
              • jsonb_build_array()
              • jsonb_each()
              • jsonb_each_text()
              • jsonb_extract_path()
              • jsonb_extract_path_text() and json_extract_path_text()
              • jsonb_object()
              • jsonb_object_agg()
              • jsonb_object_keys()
              • jsonb_populate_record()
              • jsonb_populate_recordset()
              • jsonb_pretty()
              • jsonb_set() and jsonb_insert()
              • jsonb_strip_nulls()
              • jsonb_to_record()
              • jsonb_to_recordset()
              • jsonb_typeof()
              • row_to_json()
              • to_jsonb()
          • Money
          • Numeric
          • Range
          • Serial
          • UUID
        • Functions and operators
          • Aggregate functions
            • Informal functionality overview
            • Invocation syntax and semantics
            • grouping sets, rollup, cube
            • Per function signature and purpose
              • avg(), count(), max(), min(), sum()
              • array_agg(), string_agg(), jsonb_agg(), jsonb_object_agg()
              • bit_and(), bit_or(), bool_and(), bool_or()
              • variance(), var_pop(), var_samp(), stddev(), stddev_pop(), stddev_samp()
              • linear regression
                • covar_pop(), covar_samp(), corr()
                • regr_%()
              • mode(), percentile_disc(), percentile_cont()
              • rank(), dense_rank(), percent_rank(), cume_dist()
            • case study—percentile_cont() and the "68–95–99.7" rule
            • case study—linear regression on COVID data
              • Download the COVIDcast data
              • Ingest the COVIDcast data
                • Inspect the COVIDcast data
                • Copy the .csv files to staging tables
                • Check staged data conforms to the rules
                • Join the staged data into a single table
                • SQL scripts
                  • Create cr_staging_tables()
                  • Create cr_copy_from_scripts()
                  • Create assert_assumptions_ok()
                  • Create xform_to_covidcast_fb_survey_results()
                  • ingest-the-data.sql
              • Analyze the COVIDcast data
                • symptoms vs mask-wearing by day
                • Data for scatter-plot for 21-Oct-2020
                • Scatter-plot for 21-Oct-2020
                • SQL scripts
                  • analysis-queries.sql
                  • synthetic-data.sql
          • currval()
          • lastval()
          • nextval()
          • Window functions
            • Informal functionality overview
            • Invocation syntax and semantics
            • Per function signature and purpose
              • row_number(), rank() and dense_rank()
              • percent_rank(), cume_dist() and ntile()
              • first_value(), nth_value(), last_value()
              • lag(), lead()
              • Tables for the code examples
                • table t1
                • table t2
                • table t3
                • table t4
            • case study—analyzing a normal distribution
              • Bucket allocation scheme
              • do_clean_start.sql
              • cr_show_t4.sql
              • cr_dp_views.sql
              • cr_int_views.sql
              • cr_pr_cd_equality_report.sql
              • cr_bucket_using_width_bucket.sql
              • cr_bucket_dedicated_code.sql
              • do_assert_bucket_ok
              • cr_histogram.sql
              • cr_do_ntile.sql
              • cr_do_percent_rank.sql
              • cr_do_cume_dist.sql
              • do_populate_results.sql
              • do_report_results.sql
              • do_compare_dp_results.sql
              • do_demo.sql
              • Reports
                • Histogram report
                • dp-results
                • compare-dp-results
                • int-results
          • yb_hash_code()
        • Extensions
        • Keywords
        • Reserved names
      • YCQL
        • ALTER KEYSPACE
        • ALTER ROLE
        • ALTER TABLE
        • CREATE INDEX
        • CREATE KEYSPACE
        • CREATE ROLE
        • CREATE TABLE
        • CREATE TYPE
        • DROP INDEX
        • DROP KEYSPACE
        • DROP ROLE
        • DROP TABLE
        • DROP TYPE
        • GRANT PERMISSION
        • GRANT ROLE
        • REVOKE PERMISSION
        • REVOKE ROLE
        • USE
        • INSERT
        • SELECT
        • EXPLAIN
        • UPDATE
        • DELETE
        • TRANSACTION
        • TRUNCATE
        • Simple expressions
        • Subscripted expressions
        • Function call
        • Operators
        • BLOB
        • BOOLEAN
        • Collection
        • FROZEN
        • INET
        • Integer and counter
        • Non-integer
        • TEXT
        • DATE, TIME, and TIMESTAMP
        • UUID and TIMEUUID
        • JSONB
        • Date and time
        • BATCH
    • CLIs
      • yb-ctl
      • yb-docker-ctl
      • ysqlsh
      • ycqlsh
      • yb-admin
      • yb-ts-cli
      • ysql_dump
      • ysql_dumpall
    • Configuration
      • yb-tserver
      • yb-master
      • yugabyted
      • Default ports
    • Drivers
      • Client drivers for YSQL
      • Client drivers for YCQL
    • Connectors
      • Kafka Connect YugabyteDB
    • Third party tools
      • Arctype
      • DBeaver
      • DbSchema
      • pgAdmin
      • SQL Workbench/J
      • TablePlus
      • Visual Studio Code
    • Sample datasets
      • Chinook
      • Northwind
      • PgExercises
      • SportsDB
      • Retail Analytics
  • RELEASES
    • Releases overview
      • v2.13 series (latest)
      • v2.12 series (stable)
      • v2.11 series
      • v2.9 series
      • v2.8 series
      • v2.7 series
      • v2.6 series
      • v2.5 series
      • v2.4 series
      • v2.3 series
      • v2.2 series
      • v2.1 series
      • v2.0 series
      • v1.3 series
      • v1.2 series
    • Release versioning
  • FAQ
    • Comparisons
      • Amazon Aurora
      • Google Cloud Spanner
      • CockroachDB
      • TiDB
      • Vitess
      • MongoDB
      • FoundationDB
      • Amazon DynamoDB
      • Azure Cosmos DB
      • Apache Cassandra
      • PostgreSQL
      • Redis in-memory store
      • Apache HBase
    • General FAQ
    • Operations FAQ
    • API compatibility FAQ
    • Yugabyte Platform FAQ
  • MISC
    • YEDIS
      • Quick start
      • Develop
        • Build an application
        • C#
        • C++
        • Go
        • Java
        • NodeJS
        • Python
      • API reference
        • APPEND
        • AUTH
        • CONFIG
        • CREATEDB
        • DELETEDB
        • LISTDB
        • SELECT
        • DEL
        • ECHO
        • EXISTS
        • EXPIRE
        • EXPIREAT
        • FLUSHALL
        • FLUSHDB
        • GET
        • GETRANGE
        • GETSET
        • HDEL
        • HEXISTS
        • HGET
        • HGETALL
        • HINCRBY
        • HKEYS
        • HLEN
        • HMGET
        • HMSET
        • HSET
        • HSTRLEN
        • HVALS
        • INCR
        • INCRBY
        • KEYS
        • MONITOR
        • PEXPIRE
        • PEXPIREAT
        • PTTL
        • ROLE
        • SADD
        • SCARD
        • RENAME
        • SET
        • SETEX
        • PSETEX
        • SETRANGE
        • SISMEMBER
        • SMEMBERS
        • SREM
        • STRLEN
        • ZRANGE
        • TSADD
        • TSCARD
        • TSGET
        • TSLASTN
        • TSRANGEBYTIME
        • TSREM
        • TSREVRANGEBYTIME
        • TTL
        • ZADD
        • ZCARD
        • ZRANGEBYSCORE
        • ZREM
        • ZREVRANGE
        • ZSCORE
        • PUBSUB
        • PUBLISH
        • SUBSCRIBE
        • UNSUBSCRIBE
        • PSUBSCRIBE
        • PUNSUBSCRIBE
    • Legal
      • Third party software
> Explore > Query tuning >

Analyzing Queries with EXPLAIN

Report a doc issue Suggest new content
  • The EXPLAIN Statement
    • Examples
  • Real world example
    • Optimize SELECT COUNT using an index
    • Optimize SELECT by changing table sorting
    • Optimize SELECT using an index

This section describes how to optimize queries using YSQL's EXPLAIN and EXPLAIN ANALYZE statements.

The EXPLAIN Statement

Using the EXPLAIN statement, you can obtain the query execution plan generated by YSQL for a given SQL statement. In addition to the plan, EXPLAIN returns the following information:

  • The so-called startup cost that represents the estimated query cost before the first row is returned.
  • The total cost to run the query to completion.

You can use the EXPLAIN statement in conjunction with SELECT, DELETE, INSERT, REPLACE, and UPDATE statements. The EXPLAIN statement has the following syntax:

EXPLAIN [ ( option [, ...] ) ] sql_statement;

The option and its values are described in the following table. The most important option is ANALYZE.

Option Value Description
ANALYZE boolean Returns additional run-time statistics, such as time spent within each plan node, number of processed rows, and so on, by executing sql_statement (as opposed to just creating the plan, as EXPLAIN without ANALYZE does).
The output of sql_statement is discarded.
To perform analysis of any data-modifying statement (such as INSERT, UPDATE, and DELETE) without affecting the data, you must wrap EXPLAIN ANALYZE in a transaction using the following syntax:
BEGIN;
EXPLAIN ANALYZE sql_statement;
ROLLBACK;
VERBOSE boolean Displays detailed information about the query plan.
The default value is FALSE.
COSTS boolean Provides the estimated initial and total costs of each plan node. In addition, estimates the number of rows and the width of each row in the query plan.
The default value is TRUE.
BUFFERS boolean Provides information about the most input-output intensive parts of the query.
The default value is FALSE.
You can only use this option when ANALYZE is set to TRUE.
TIMING boolean Provides information about the actual startup time and the time spent in each node of the output.
The default value is TRUE.
You can only use this option when ANALYZE is set to TRUE.
SUMMARY boolean Provides additional information, such as the total time after the query plan. The value of this option is TRUE when ANALYZE is set to TRUE.
FORMAT { TEXT | XML | JSON | YAML } Allows you to define the query plan output format.
The default value is TEXT.

Examples

Typically, you start by creating a table in YugabyteDB and inserting rows into it.

To create a table called employees, execute the following:

yugabyte=# CREATE TABLE employees(k1 int, k2 int, v1 int, v2 text, PRIMARY KEY (k1, k2));

To insert table rows, execute the following:

yugabyte=# INSERT INTO employees (k1, k2, v1, v2) 
VALUES (1, 2.0, 3, 'a'), (2, 3.0, 4, 'b'), (3, 4.0, 5, 'c');

To check the query plan for simple select, execute the following:

yugabyte=# EXPLAIN SELECT * FROM employees WHERE k1 = 1;

The following output displays the query execution cost estimate:

QUERY PLAN
----------------------------------------------------------------
Foreign Scan on employees  (cost=0.00..112.50 rows=1000 width=44)
(1 row)

To check the execution plan for select with a complex condition that requires filtering, execute the following:

yugabyte=# EXPLAIN SELECT * FROM employees 
WHERE k1 = 2 and floor(k2 + 1.5) = v1;

The following output displays the cost estimate based on the filtered result:

QUERY PLAN
----------------------------------------------------------------
Foreign Scan on employees  (cost=0.00..125.00 rows=1000 width=44)
   Filter: (floor(((k2)::numeric + 1.5)) = (v1)::numeric)
(2 rows)

By enabling the ANALYZE option and wrapping it to preserve data integrity, you can trigger the query execution, as follows:

BEGIN;
yugabyte=# EXPLAIN ANALYZE SELECT * FROM employees 
WHERE k1 = 2 and floor(k2 + 1.5) = v1;
ROLLBACK;

In addition to the cost estimates from the query planner, EXPLAIN ANALYZE displays the server output produced during the statement execution, as shown in the following example:

yugabyte=# EXPLAIN ANALYZE SELECT * FROM employees a LEFT JOIN LATERAL 
(SELECT * FROM employees b WHERE a = b) c ON TRUE;
QUERY PLAN
-----------------------------------------------------------------------------------------
Nested Loop Left Join  (cost=0.00..15202.50 rows=5000 width=88) (actual time=2.853..2.885 rows=3 loops=1)
   Join Filter: (a.* = b.*)
   Rows Removed by Join Filter: 6
   ->  Seq Scan on employees_k a  (cost=0.00..100.00 rows=1000 width=112) (actual time=1.747..1.749 rows=3 loops=1)
   ->  Materialize  (cost=0.00..105.00 rows=1000 width=112) (actual time=0.155..0.157 rows=3 loops=3)
         ->  Seq Scan on employees_k b  (cost=0.00..100.00 rows=1000 width=112) (actual time=0.450..0.454 rows=3 loops=1)
 Planning Time: 0.072 ms
 Execution Time: 2.938 ms
(8 rows)

The server output from the preceding example includes the number of rescans (loops) each node performed, the number of milliseconds passed before the first row was returned, total time before the last tuple was returned by each execution node, and the number of tuples returned by each execution node.

EXPLAIN, on the other hand, does not provide this additional information, as shown in the following examples:

yugabyte=# EXPLAIN SELECT * FROM employees_k a LEFT JOIN LATERAL 
(SELECT * FROM employees_k b WHERE a = b) c ON TRUE;
QUERY PLAN
----------------------------------------------------------------------
Nested Loop Left Join  (cost=0.00..15202.50 rows=5000 width=88)
   Join Filter: (a.* = b.*)
   ->  Seq Scan on employees_k a  (cost=0.00..100.00 rows=1000 width=112)
   ->  Materialize  (cost=0.00..105.00 rows=1000 width=112)
         ->  Seq Scan on employees_k b  (cost=0.00..100.00 rows=1000 width=112)
(5 rows)

Real world example

The following example is drawn from a real-world scenario, using the EXPLAIN statement to view query plans, and then optimizing those queries by adding indexes and adjusting tables.

Optimize SELECT COUNT using an index

The following table is representative of the customer's data.

                                    Table "public.contacts"
Column          | Type                           | Collation | Nullable | Default
----------------+--------------------------------+-----------+----------+--------
id              | bigint                         |           | not null |
account_id      | integer                        |           |          |
email           | character varying              |           |          |
first_name      | character varying              |           |          |
last_name       | character varying              |           |          |
address_line_1  | character varying              |           |          |
address_line_2  | character varying              |           |          |
address_city    | character varying              |           |          |
address_state   | character varying              |           |          |
address_postal  | character varying              |           |          |
created_at      | timestamp(6) without time zone |           | not null |
updated_at      | timestamp(6) without time zone |           | not null |
is_over_charged | boolean                        |           |          | false
is_paid         | boolean                        |           |          | false
data_source     | character varying              |           |          |

Indexes:
    "contacts_pkey" PRIMARY KEY, lsm (id HASH)

Running the following queries with EXPLAIN output shows the query execution plan generated by YSQL for a given SQL statement.

yugabyte=# explain SELECT COUNT(*) FROM contacts WHERE contacts.account_id = 1234 
    AND contacts.is_paid = TRUE 
    AND contacts.is_over_charged = TRUE 
    AND (updated_at > '2021-04-12 12:00:00 '); 
QUERY PLAN
----------------------------------------------
Aggregate (cost=107.50..107.51 rows=1 width=8)
    Seq Scan on contacts (cost=0.00..105.00 rows=1000 width=0)
        Filter: (is_paid AND is_over_charged AND (updated_at > '2021-04-12 12:00:00'::timestamp without time zone) AND (account_id = 1234))
(3 rows)
yugabyte=# explain SELECT COUNT(*) FROM contacts WHERE contacts.account_id = 5678 
    AND contacts.is_paid_for = TRUE 
    AND contacts.is_over_charged = TRUE 
    AND (updated_at > '2021-04-12 12:00:00');
QUERY PLAN
----------------------------------------------
Aggregate (cost=107.50..107.51 rows=1 width=8)
    Seq Scan on contacts (cost=0.00..105.00 rows=1000 width=0)
        Filter: (is_paid AND is_over_charged AND (updated_at > '2021-04-12 12:00:00'::timestamp without time zone) AND (account_id = 5678))
(3 rows)
yugabyte=# explain SELECT COUNT(*) FROM contacts WHERE contacts.account_id = 7890 
    AND contacts.is_paid = FALSE 
    AND (updated_at > '2021-04-12 12:00:00');
QUERY PLAN
----------------------------------------------
Aggregate (cost=107.50..107.51 rows=1 width=8)
    Seq Scan on contacts (cost=0.00..105.00 rows=1000 width=0)
        Filter: ((NOT is_paid) AND (updated_at > '2021-04-12 12:00:00'::timestamp without time zone) AND (account_id =1234))
(3 rows)

In each case, the queries do a Seq Scan (sequential scan) on the tables. This operation requires scanning the entire table to retrieve the desired columns. Even using the partition keys to do the lookup, it still needs to do a lot of scanning.

Avoid SELECT COUNT(*) queries in most cases, as they can require a full scan of the table to get the results. This can cause query degradation, and in some cases cause the query to not return at all.

Because most of the queries above use account_id as the main qualifier, you can avoid a sequential scan by creating a direct index on that column, and then using the INCLUDE feature to cover the other columns that you also want in the index. Indexing is a powerful tool that can speed up queries with higher latencies. When creating an index, consider the column cardinality, as well as the different index types.

Create the index as follows:

create index contacts_account_id on contacts (account_id hash, updated_at desc) include (is_paid, is_over_charged);

With the index in place, the queries now do an index rather than sequential scan to get the data, significantly improving performance.

yugabyte=# explain SELECT COUNT(*) FROM contacts WHERE contacts.account_id = 1234 
    AND contacts.is_paid = TRUE 
    AND contacts.is_over_charged = TRUE 
    AND (updated_at > '2021-04-12 12:00:00');
QUERY PLAN
------------------------------------------
Aggregate (cost=5.30..5.31 rows=1 width=8)
    Index Scan using contacts_account_id on contacts (cost=0.00..5.28 rows=10 width=0)
    Index Cond: (account_id = 1234)
        Filter: (is_paid AND is_over_charged AND (updated_at > '2021-04-12 12:00:00'::timestamp without time zone))
(4 rows) 

Time: 57.208 ms
Previous run time: 194 seconds
yugabyte=# explain SELECT COUNT(*) FROM contacts WHERE contacts.account_id = 5678 
    AND contacts.is_paid = TRUE 
    AND contacts.is_over_charged = TRUE 
    AND (updated_at > '2021-04-12 12:00:00');
QUERY PLAN
------------------------------------------
Aggregate (cost=5.30..5.31 rows=1 width=8)
    Index Scan using contacts_account_id on contacts (cost=0.00..5.28 rows=10 width=0)
    Index Cond: (account_id = 5678)
        Filter: (is_paid AND is_over_charged AND (updated_at > '2021-04-12 12:00:00'::timestamp without time zone))
(4 rows)

Time: 11.923 ms
Previous run time 188 seconds
yugabyte=# explain SELECT COUNT(*) FROM contacts WHERE contacts.account_id = 7890 
    AND contacts.is_paid = FALSE 
    AND (updated_at > '2021-04-12 12:00:00');
QUERY PLAN
------------------------------------------
Aggregate (cost=5.30..5.31 rows=1 width=8)
    Index Scan using contacts_account_id on contacts (cost=0.00..5.28 rows=10 width=0)
    Index Cond: (account_id = 8060)
        Filter: ((NOT is_paid) AND (updated_at > '2021-04-12 12:00:00'::timestamp without time zone))
(4 rows)

Time: 46.658 ms
Previous run time: 147 seconds

Optimize SELECT by changing table sorting

The following query retrieves data from an account table where some indexes are already defined.

Table definition:

yugabyte=# \d accounts
                                    Table "public.accounts"
Column        | Type                        | Collation | Nullable | Default
--------------+-----------------------------+-----------+----------+--------
id            | bigint                      | For       | not null | nextval('accounts_id_seq'::regclass)
company_name  | character varying(125)      |           | not null |
status        | character varying(25)       |           |          |
first_name    | character varying(55)       |           |          |
last_name     | character varying(55)       |           |          |
phone         | character varying(25)       |           |          |
created_at    | timestamp without time zone |           | not null |
updated_at    | timestamp without time zone |           | not null |
product_id    | integer                     |           |          |
business_type | character varying(55)       |           |          |
sales_rep     | character varying           |           |          |

Indexes:
    "accounts_pkey" PRIMARY KEY, lsm (id HASH)
    "index_on_company_name" lsm (company_name HASH)

EXPLAIN output for the query is as follows:

yugabyte=# explain SELECT accounts.* FROM accounts 
    ORDER BY accounts.id desc, accounts.id desc LIMIT 25 OFFSET 0;
QUERY PLAN
----------------------------------------------
Limit (cost=128.22..128.28 rows=25 width=1642)
    Sort (cost=128.22..130.72 rows=1000 width=1642)
        Sort Key: id DESC
            Seq Scan on accounts (cost=0.00..100.00 rows=1000 width=1642)

In this case, a sort is run first, which adds extra time to the query, before running a sequential scan of the table, which also degrades performance.

To optimize this query, adjust the sorting of the table by the primary key to be DESC rather than HASH.

CREATE TABLE public.accounts ( id bigint NOT NULL, ... ,PRIMARY KEY(id desc);

Now, the query no longer does a sequential scan; instead it uses an index scan, cutting execution time from 430ms to 3ms.

yugabyte=# explain SELECT accounts.* FROM accounts 
    ORDER BY accounts.id desc, accounts.id desc LIMIT 25 OFFSET 0;
QUERY PLAN
------------------------------------------
Limit (cost=0.00..2.85 rows=25 width=1642)
    Index Scan using accounts_pkey on accounts (cost=0.00..114.00 rows=1000 width=1642)

Time: 2.994 ms
Previous run time: 426.627 ms

Optimize SELECT using an index

The query in the following example runs a sequential scan, which you can fix by adding an index.

yugabyte=# \d account_type
                                    Table "public.account_type"
Column      | Type                           | Collation | Nullable | Default
------------+--------------------------------+-----------+----------+--------
id          | bigint                         |           | not null | nextval('account_domains_id_seq'::regclass)
account_id  | integer                        |           | For      |
type        | character varying(55)          |           |          |
url         | character varying              |           |          |
is_valid    | boolean                        |           |          |
created_at  | timestamp(6) without time zone |           | not null |
updated_at  | timestamp(6) without time zone |           | not null |
verified_at | timestamp without time zone    |           |          |

Indexes:
    "account_type_pkey" PRIMARY KEY, lsm (id HASH)
yugabyte=# explain SELECT account_domains.* FROM account_type 
    WHERE account_type.account_id = 1234 ORDER BY account_type.url ASC;
QUERY PLAN
----------------------------------------------
Sort (cost=152.33..154.83 rows=1000 width=237)
    Sort Key: url
        Seq Scan on account_type (cost=0.00..102.50 rows=1000 width=237)
            Filter: (account_id = 6873)

The query runs a sequential scan on the account_type table, so adding an index on account_id prevents the full scan of the table, as follows:

create index account_id on account_type(account_id);

With the new index, the query scans the index rather than the larger main table, significantly improving performance.

yugabyte=# explain SELECT account_type.* FROM account_type 
    WHERE account_type.account_id = 6873 ORDER BY account_type.url ASC;
QUERY PLAN
----------------------------------------
Sort (cost=5.39..5.42 rows=10 width=237)
    Sort Key: url
        Index Scan using account_id on account_type (cost=0.00..5.22 rows=10 width=237)
            Index Cond: (account_id = 6873)
    
Time: 71.757 ms
Previous runtime: 460 ms
  • The EXPLAIN Statement
    • Examples
  • Real world example
    • Optimize SELECT COUNT using an index
    • Optimize SELECT by changing table sorting
    • Optimize SELECT using an index
Ask our community
  • Slack
  • Github
  • Forum
  • StackOverflow
Yugabyte
Contact Us
Copyright © 2017-2022 Yugabyte, Inc. All rights reserved.