Join us on YugabyteDB Community Slack
Star us on
Get Started
Slack
GitHub
Get Started
v2.13 (latest) v2.12 (stable) v2.8 (earlier version) v2.6 (earlier version) v2.4 (earlier version) v2.2 (earlier version) v2.1 (earlier version) v2.0 (earlier version) v1.3 (earlier version)
  • YUGABYTEDB CORE
    • Quick start
      • 1. Install YugabyteDB
      • 2. Create a local cluster
      • 3. Explore distributed SQL
      • 4. Build an application
        • Java
        • Node.js
        • Go
        • Python
        • Ruby
        • C#
        • PHP
        • C++
        • C
        • Scala
    • Explore
      • SQL features
        • Schemas and Tables
        • Data Types
        • Data Manipulation
        • Queries and Joins
        • Expressions and Operators
        • Stored Procedures
        • Triggers
        • Advanced features
          • Cursors
          • Table Partitioning
          • Views
          • Savepoints
          • Collations
          • Extensions
        • Going beyond SQL
          • Follower reads
          • Tablespaces
      • Fault tolerance
      • Horizontal scalability
        • Scaling Transactions
        • Sharding Data
      • Transactions
        • Distributed Transactions
        • Isolation Levels
        • Explicit Locking
      • Indexes and Constraints
        • Overview
        • Unique Indexes
        • Partial Indexes
        • Expression Indexes
        • Generalized Inverted Indexes
        • Primary Key
        • Foreign Key
        • Other Constraints
      • JSON support
      • Multi-region deployments
        • Sync replication (3+ regions)
        • Async Replication (2+ regions)
        • Row-Level Geo-Partitioning
        • Read replicas
      • Query tuning
        • Introduction
        • Get query statistics using pg_stat_statements
        • Viewing live queries with pg_stat_activity
        • Analyzing queries with EXPLAIN
        • Optimizing YSQL queries using pg_hint_plan
      • Cluster management
        • Point-in-time recovery
      • Security
      • Observability
        • Prometheus Integration
        • Grafana Dashboard
    • Develop
      • Learn app development
        • 1. SQL vs NoSQL
        • 2. Data modeling
        • 3. Data types
        • 4. ACID transactions
        • 5. Aggregations
        • 6. Batch operations
        • 7. Date and time
        • 8. Strings and text
        • 9. TTL for data expiration
      • Real-world examples
        • E-Commerce app
        • IoT fleet management
      • Explore sample apps
      • Best practices
      • Cloud-native development
        • Codespaces
        • Gitpod
    • Migrate
      • Migration process overview
      • Migrate from PostgreSQL
        • Convert a PostgreSQL schema
        • Migrate a PostgreSQL application
        • Export PostgreSQL data
        • Prepare a cluster
        • Import PostgreSQL data
        • Verify Migration
    • Deploy
      • Deployment checklist
      • Manual deployment
        • 1. System configuration
        • 2. Install software
        • 3. Start YB-Masters
        • 4. Start YB-TServers
        • 5. Verify deployment
      • Kubernetes
        • Single-zone
          • Open Source
          • Amazon EKS
          • Google Kubernetes Engine
          • Azure Kubernetes Service
        • Multi-zone
          • Amazon EKS
          • Google Kubernetes Engine
        • Multi-cluster
          • Google Kubernetes Engine
        • Best practices
        • Connect Clients
      • Docker
      • Public clouds
        • Amazon Web Services
        • Google Cloud Platform
        • Microsoft Azure
      • Multi-DC deployments
        • Three+ data center (3DC)
        • Asynchronous Replication
        • Read replica clusters
    • Benchmark
      • TPC-C
      • sysbench
      • YCSB
      • Key-value workload
      • Large datasets
      • Scalability
        • Scaling queries
      • Resilience
        • Jepsen testing
      • Performance Troubleshooting
    • Secure
      • Security checklist
      • Enable Authentication
        • Enable User Authentication
        • Configure ysql_hba_conf_csv
      • Authentication Methods
        • Password Authentication
        • LDAP Authentication
        • Host-Based Authentication
        • Trust Authentication
      • Role-Based Access Control
        • Overview
        • Manage Users and Roles
        • Grant Privileges
        • Row-Level Security (RLS)
        • Column-Level Security
      • Encryption in Transit
        • Create server certificates
        • Enable server-to-server encryption
        • Enable client-to-server encryption
        • Connect to Clusters
        • TLS and authentication
      • Encryption at rest
      • Column-level encryption
      • Audit Logging
        • Configure Audit Logging
        • Session-Level Audit Logging
        • Object-Level Audit Logging
      • Vulnerability disclosure policy
    • Manage
      • Back up and restore
        • Back up data
        • Restore data
        • Point-in-time recovery
        • Snapshot and restore data
      • Migrate data
        • Bulk import
        • Bulk export
      • Change cluster configuration
      • Diagnostics reporting
      • Upgrade a deployment
      • Grow cluster
    • Troubleshoot
      • Troubleshooting
      • Cluster level issues
        • YCQL connection issues
        • YEDIS connection Issues
        • Recover tserver/master
        • Replace a failed YB-TServer
        • Replace a failed YB-Master
        • Manual remote bootstrap when a majority of peers fail
      • Node level issues
        • Check servers
        • Inspect logs
        • System statistics
        • Disk failure
        • Common error messages
    • Contribute
      • Core database
        • Contribution checklist
        • Build the source
        • Configure a CLion project
        • Run the tests
        • Coding style
  • YUGABYTE PLATFORM
    • Overview
      • Install
      • Configure
    • Install Yugabyte Platform
      • Prerequisites
      • Prepare the environment
      • Install software
      • Prepare nodes (on-prem)
      • Uninstall software
    • Configure Yugabyte Platform
      • Create admin user
      • Configure the cloud provider
      • Configure the backup target
      • Configure alerts
    • Create deployments
      • Multi-zone universe
      • Multi-region universe
      • Multi-cloud universe
      • Read replica cluster
      • Asynchronous replication
    • Manage deployments
      • Start and stop processes
      • Add a node
      • Eliminate an unresponsive node
      • Enable high availability
      • Edit configuration flags
      • Edit a universe
      • Delete a universe
      • Configure instance tags
      • Upgrade YugabyteDB software
      • Migrate to Helm 3
    • Back up universes
      • Configure backup storage
      • Back up universe data
      • Restore universe data
      • Schedule data backups
    • Security
      • Security checklist
      • Customize ports
      • LDAP authentication
      • Authorization platform
      • Create a KMS configuration
      • Enable encryption at rest
      • Enable encryption in transit (TLS)
      • Network security
    • Alerts and monitoring
      • Alerts
      • Live Queries dashboard
      • Slow Queries dashboard
    • Troubleshoot
      • Install and upgrade issues
      • Universe issues
    • Administer Yugabyte Platform
      • Back Up Yugabyte Platform
      • Authenticate with LDAP
    • Upgrade Yugabyte Platform
      • Upgrade using Replicated
  • YUGABYTE CLOUD
    • Overview
    • Quick start
      • Create a free cluster
      • Connect to the cluster
      • Create a database
      • Explore distributed SQL
      • Build an application
        • Before you begin
        • Java
        • Go
        • Python
        • Node.js
        • C
        • C++
        • C#
        • Ruby
        • Rust
        • PHP
    • Deploy clusters
      • Planning a cluster
      • Create a free cluster
      • Create a standard cluster
      • VPC network
        • Overview
        • Set up a VPC network
        • VPCs
        • Peering Connections
    • Secure clusters
      • IP allow lists
      • Database authorization
      • Add database users
      • Encryption in transit
      • Audit cloud activity
    • Connect to clusters
      • Cloud Shell
      • Client shell
      • Connect applications
    • Alerts and monitoring
      • Alerts
      • Performance metrics
      • Live queries
      • Slow YSQL queries
      • Cluster activity
    • Manage clusters
      • Backup and restore
      • Scale and configure clusters
      • Create extensions
    • Administer Yugabyte Cloud
      • Manage cloud users
      • Manage billing
      • Cluster costs
    • Example applications
      • Connect a Spring application
      • Connect a YCQL Java application
      • Hasura Cloud
      • Deploy a GraphQL application
    • Security architecture
      • Security architecture
      • Shared responsibility model
    • Troubleshoot
    • Yugabyte Cloud FAQ
    • What's new
  • INTEGRATIONS
    • Apache Kafka
    • Apache Spark
    • JanusGraph
    • KairosDB
    • Presto
    • Metabase
    • WSO2 Identity Server
    • YSQL Loader
    • Yugabyte JDBC Driver
    • Prisma
    • Hasura
      • Application Development
      • Benchmarking
    • Spring Framework
      • Spring Data YugabyteDB
      • Spring Data Cassandra
    • Flyway
    • GORM
    • Liquibase
    • Sequelize
    • SQLAlchemy
    • Entity Framework
    • Django REST framework
  • REFERENCE
    • Architecture
      • Design goals
      • Key concepts
        • Universe
        • YB-TServer Service
        • YB-Master Service
      • Core functions
        • Universe creation
        • Table creation
        • Write IO path
        • Read IO path
        • High availability
      • Layered architecture
      • Query layer
        • Overview
      • DocDB transactions layer
        • Transactions overview
        • Transaction isolation levels
        • Explicit locking
        • Read Committed
        • Single-row transactions
        • Distributed transactions
        • Transactional IO path
      • DocDB sharding layer
        • Hash & range sharding
        • Tablet splitting
        • Colocated tables
      • DocDB replication layer
        • Replication
        • xCluster replication
        • Read replicas
        • Change data capture (CDC)
      • DocDB storage layer
        • Persistence
        • Performance
    • APIs
      • YSQL
        • The SQL language
          • SQL statements
            • ABORT
            • ALTER DATABASE
            • ALTER DEFAULT PRIVILEGES
            • ALTER DOMAIN
            • ALTER GROUP
            • ALTER POLICY
            • ALTER ROLE
            • ALTER SEQUENCE
            • ALTER TABLE
            • ALTER USER
            • ANALYZE
            • BEGIN
            • CALL
            • COMMENT
            • COMMIT
            • COPY
            • CREATE AGGREGATE
            • CREATE CAST
            • CREATE DATABASE
            • CREATE DOMAIN
            • CREATE EXTENSION
            • CREATE FUNCTION
            • CREATE GROUP
            • CREATE INDEX
            • CREATE MATERIALIZED VIEW
            • CREATE OPERATOR
            • CREATE OPERATOR CLASS
            • CREATE POLICY
            • CREATE PROCEDURE
            • CREATE ROLE
            • CREATE RULE
            • CREATE SCHEMA
            • CREATE SEQUENCE
            • CREATE TABLE
            • CREATE TABLE AS
            • CREATE TRIGGER
            • CREATE TYPE
            • CREATE USER
            • CREATE VIEW
            • DEALLOCATE
            • DELETE
            • DO
            • DROP AGGREGATE
            • DROP CAST
            • DROP DATABASE
            • DROP DOMAIN
            • DROP EXTENSION
            • DROP FUNCTION
            • DROP GROUP
            • DROP MATERIALIZED VIEW
            • DROP OPERATOR
            • DROP OPERATOR CLASS
            • DROP OWNED
            • DROP POLICY
            • DROP PROCEDURE
            • DROP ROLE
            • DROP RULE
            • DROP SEQUENCE
            • DROP TABLE
            • DROP TRIGGER
            • DROP TYPE
            • DROP USER
            • END
            • EXECUTE
            • EXPLAIN
            • GRANT
            • INSERT
            • LOCK
            • PREPARE
            • REASSIGN OWNED
            • REFRESH MATERIALIZED VIEW
            • RELEASE SAVEPOINT
            • RESET
            • REVOKE
            • ROLLBACK
            • ROLLBACK TO SAVEPOINT
            • SAVEPOINT
            • SELECT
            • SET
            • SET CONSTRAINTS
            • SET ROLE
            • SET SESSION AUTHORIZATION
            • SET TRANSACTION
            • SHOW
            • SHOW TRANSACTION
            • TRUNCATE
            • UPDATE
            • VALUES
          • WITH clause
            • WITH clause—SQL syntax and semantics
            • recursive CTE
            • case study—traversing an employee hierarchy
            • traversing general graphs
              • graph representation
              • common code
              • undirected cyclic graph
              • directed cyclic graph
              • directed acyclic graph
              • rooted tree
              • Unique containing paths
              • Stress testing find_paths()
            • case study—Bacon Numbers from IMDb
              • Bacon numbers for synthetic data
              • Bacon numbers for IMDb data
        • Data types
          • Array
            • array[] constructor
            • Literals
              • Text typecasting and literals
              • Array of primitive values
              • Row
              • Array of rows
            • FOREACH loop (PL/pgSQL)
            • array of DOMAINs
            • Functions and operators
              • ANY and ALL
              • Array comparison
              • Array slice operator
              • Array concatenation
              • Array properties
              • array_agg(), unnest(), generate_subscripts()
              • array_fill()
              • array_position(), array_positions()
              • array_remove()
              • array_replace() / set value
              • array_to_string()
              • string_to_array()
          • Binary
          • Boolean
          • Character
          • Date and time
            • Conceptual background
            • Timezones and UTC offsets
              • Catalog views
              • Extended_timezone_names
                • Unrestricted full projection
                • Real timezones with DST
                • Real timezones no DST
                • Synthetic timezones no DST
              • Offset/timezone-sensitive operations
                • Timestamptz to/from timestamp conversion
                • Pure 'day' interval arithmetic
              • Four ways to specify offset
                • Name-resolution rules
                  • 1 case-insensitive resolution
                  • 2 ~names.abbrev never searched
                  • 3 'set timezone' string not resolved in ~abbrevs.abbrev
                  • 4 ~abbrevs.abbrev before ~names.name
                  • Helper functions
              • Syntax contexts for offset
              • Recommended practice
            • Typecasting between date-time and text-values
            • Semantics of the date-time data types
              • Date data type
              • Time data type
              • Plain timestamp and timestamptz
              • Interval data type
                • Interval representation
                  • Ad hoc examples
                  • Representation model
                • Interval value limits
                • Declaring intervals
                • Justify() and extract(epoch...)
                • Interval arithmetic
                  • Interval-interval comparison
                  • Interval-interval addition and subtraction
                  • Interval-number multiplication
                  • Moment-moment overloads of "-"
                  • Moment-interval overloads of "+" and "-"
                • Custom interval domains
                • Interval utility functions
            • Typecasting between date-time datatypes
            • Operators
              • Test comparison overloads
              • Test addition overloads
              • Test subtraction overloads
              • Test multiplication overloads
              • Test division overloads
            • General-purpose functions
              • Creating date-time values
              • Manipulating date-time values
              • Current date-time moment
              • Delaying execution
              • Miscellaneous
                • Function age()
                • Function extract() | date_part()
                • Implementations that model the overlaps operator
            • Formatting functions
            • Case study—SQL stopwatch
            • Download & install the date-time utilities
            • ToC
          • JSON
            • JSON literals
            • Primitive and compound data types
            • Code example conventions
            • Indexes and check constraints
            • Functions & operators
              • ::jsonb, ::json, ::text (typecast)
              • ->, ->>, #>, #>> (JSON subvalues)
              • - and #- (remove)
              • || (concatenation)
              • = (equality)
              • @> and <@ (containment)
              • ? and ?| and ?& (key or value existence)
              • array_to_json()
              • jsonb_agg()
              • jsonb_array_elements()
              • jsonb_array_elements_text()
              • jsonb_array_length()
              • jsonb_build_object()
              • jsonb_build_array()
              • jsonb_each()
              • jsonb_each_text()
              • jsonb_extract_path()
              • jsonb_extract_path_text() and json_extract_path_text()
              • jsonb_object()
              • jsonb_object_agg()
              • jsonb_object_keys()
              • jsonb_populate_record()
              • jsonb_populate_recordset()
              • jsonb_pretty()
              • jsonb_set() and jsonb_insert()
              • jsonb_strip_nulls()
              • jsonb_to_record()
              • jsonb_to_recordset()
              • jsonb_typeof()
              • row_to_json()
              • to_jsonb()
          • Money
          • Numeric
          • Range
          • Serial
          • UUID
        • Functions and operators
          • Aggregate functions
            • Informal functionality overview
            • Invocation syntax and semantics
            • grouping sets, rollup, cube
            • Per function signature and purpose
              • avg(), count(), max(), min(), sum()
              • array_agg(), string_agg(), jsonb_agg(), jsonb_object_agg()
              • bit_and(), bit_or(), bool_and(), bool_or()
              • variance(), var_pop(), var_samp(), stddev(), stddev_pop(), stddev_samp()
              • linear regression
                • covar_pop(), covar_samp(), corr()
                • regr_%()
              • mode(), percentile_disc(), percentile_cont()
              • rank(), dense_rank(), percent_rank(), cume_dist()
            • case study—percentile_cont() and the "68–95–99.7" rule
            • case study—linear regression on COVID data
              • Download the COVIDcast data
              • Ingest the COVIDcast data
                • Inspect the COVIDcast data
                • Copy the .csv files to staging tables
                • Check staged data conforms to the rules
                • Join the staged data into a single table
                • SQL scripts
                  • Create cr_staging_tables()
                  • Create cr_copy_from_scripts()
                  • Create assert_assumptions_ok()
                  • Create xform_to_covidcast_fb_survey_results()
                  • ingest-the-data.sql
              • Analyze the COVIDcast data
                • symptoms vs mask-wearing by day
                • Data for scatter-plot for 21-Oct-2020
                • Scatter-plot for 21-Oct-2020
                • SQL scripts
                  • analysis-queries.sql
                  • synthetic-data.sql
          • currval()
          • lastval()
          • nextval()
          • Window functions
            • Informal functionality overview
            • Invocation syntax and semantics
            • Per function signature and purpose
              • row_number(), rank() and dense_rank()
              • percent_rank(), cume_dist() and ntile()
              • first_value(), nth_value(), last_value()
              • lag(), lead()
              • Tables for the code examples
                • table t1
                • table t2
                • table t3
                • table t4
            • case study—analyzing a normal distribution
              • Bucket allocation scheme
              • do_clean_start.sql
              • cr_show_t4.sql
              • cr_dp_views.sql
              • cr_int_views.sql
              • cr_pr_cd_equality_report.sql
              • cr_bucket_using_width_bucket.sql
              • cr_bucket_dedicated_code.sql
              • do_assert_bucket_ok
              • cr_histogram.sql
              • cr_do_ntile.sql
              • cr_do_percent_rank.sql
              • cr_do_cume_dist.sql
              • do_populate_results.sql
              • do_report_results.sql
              • do_compare_dp_results.sql
              • do_demo.sql
              • Reports
                • Histogram report
                • dp-results
                • compare-dp-results
                • int-results
          • yb_hash_code()
        • Extensions
        • Keywords
        • Reserved names
      • YCQL
        • ALTER KEYSPACE
        • ALTER ROLE
        • ALTER TABLE
        • CREATE INDEX
        • CREATE KEYSPACE
        • CREATE ROLE
        • CREATE TABLE
        • CREATE TYPE
        • DROP INDEX
        • DROP KEYSPACE
        • DROP ROLE
        • DROP TABLE
        • DROP TYPE
        • GRANT PERMISSION
        • GRANT ROLE
        • REVOKE PERMISSION
        • REVOKE ROLE
        • USE
        • INSERT
        • SELECT
        • EXPLAIN
        • UPDATE
        • DELETE
        • TRANSACTION
        • TRUNCATE
        • Simple expressions
        • Subscripted expressions
        • Function call
        • Operators
        • BLOB
        • BOOLEAN
        • Collection
        • FROZEN
        • INET
        • Integer and counter
        • Non-integer
        • TEXT
        • DATE, TIME, and TIMESTAMP
        • UUID and TIMEUUID
        • JSONB
        • Date and time
        • BATCH
    • CLIs
      • yb-ctl
      • yb-docker-ctl
      • ysqlsh
      • ycqlsh
      • yb-admin
      • yb-ts-cli
      • ysql_dump
      • ysql_dumpall
    • Configuration
      • yb-tserver
      • yb-master
      • yugabyted
      • Default ports
    • Drivers
      • Client drivers for YSQL
      • Client drivers for YCQL
    • Connectors
      • Kafka Connect YugabyteDB
    • Third party tools
      • Arctype
      • DBeaver
      • DbSchema
      • pgAdmin
      • SQL Workbench/J
      • TablePlus
      • Visual Studio Code
    • Sample datasets
      • Chinook
      • Northwind
      • PgExercises
      • SportsDB
      • Retail Analytics
  • RELEASES
    • Releases overview
      • v2.13 series (latest)
      • v2.12 series (stable)
      • v2.11 series
      • v2.9 series
      • v2.8 series
      • v2.7 series
      • v2.6 series
      • v2.5 series
      • v2.4 series
      • v2.3 series
      • v2.2 series
      • v2.1 series
      • v2.0 series
      • v1.3 series
      • v1.2 series
    • Release versioning
  • FAQ
    • Comparisons
      • Amazon Aurora
      • Google Cloud Spanner
      • CockroachDB
      • TiDB
      • Vitess
      • MongoDB
      • FoundationDB
      • Amazon DynamoDB
      • Azure Cosmos DB
      • Apache Cassandra
      • PostgreSQL
      • Redis in-memory store
      • Apache HBase
    • General FAQ
    • Operations FAQ
    • API compatibility FAQ
    • Yugabyte Platform FAQ
  • MISC
    • YEDIS
      • Quick start
      • Develop
        • Build an application
        • C#
        • C++
        • Go
        • Java
        • NodeJS
        • Python
      • API reference
        • APPEND
        • AUTH
        • CONFIG
        • CREATEDB
        • DELETEDB
        • LISTDB
        • SELECT
        • DEL
        • ECHO
        • EXISTS
        • EXPIRE
        • EXPIREAT
        • FLUSHALL
        • FLUSHDB
        • GET
        • GETRANGE
        • GETSET
        • HDEL
        • HEXISTS
        • HGET
        • HGETALL
        • HINCRBY
        • HKEYS
        • HLEN
        • HMGET
        • HMSET
        • HSET
        • HSTRLEN
        • HVALS
        • INCR
        • INCRBY
        • KEYS
        • MONITOR
        • PEXPIRE
        • PEXPIREAT
        • PTTL
        • ROLE
        • SADD
        • SCARD
        • RENAME
        • SET
        • SETEX
        • PSETEX
        • SETRANGE
        • SISMEMBER
        • SMEMBERS
        • SREM
        • STRLEN
        • ZRANGE
        • TSADD
        • TSCARD
        • TSGET
        • TSLASTN
        • TSRANGEBYTIME
        • TSREM
        • TSREVRANGEBYTIME
        • TTL
        • ZADD
        • ZCARD
        • ZRANGEBYSCORE
        • ZREM
        • ZREVRANGE
        • ZSCORE
        • PUBSUB
        • PUBLISH
        • SUBSCRIBE
        • UNSUBSCRIBE
        • PSUBSCRIBE
        • PUNSUBSCRIBE
    • Legal
      • Third party software
> Explore > Horizontal scalability >

Sharding Data Across Nodes

Report a doc issue Suggest new content
  • Sharding strategies
    • Hash sharding
    • Range sharding
  • Try it out
    • Create a universe
    • Create a table
    • Explore tablets
    • Insert and query a table
    • Automatic sharding when adding nodes
    • [Optional] Clean up
  • Further reading

YugabyteDB automatically splits user tables into multiple shards, called tablets, using either a hash- or range- based strategy.

The primary key for each row in the table uniquely determines the tablet the row lives in. This is shown in the following figure.

Sharding a table into tablets

By default, YugabyteDB creates eight tablets per node in the cluster for each table and automatically distributes the data across the various tablets, which in turn are distributed evenly across the nodes. In the Try it out section, you'll explore how automatic sharding is done internally for tables. The system Redis table works in exactly the same way.

Sharding strategies

Sharding is the process of breaking up large tables into smaller chunks called shards that are spread across multiple servers. Essentially, a shard is a horizontal data partition that contains a subset of the total data set, and hence is responsible for serving a portion of the overall workload. The idea is to distribute data that can’t fit on a single node onto a cluster of database nodes.

Sharding is also referred to as horizontal partitioning. The distinction between horizontal and vertical comes from the traditional tabular view of a database. A database can be split vertically—storing different table columns in a separate database, or horizontally—storing rows of the same table in multiple database nodes.

YugabyteDB currently supports two ways of sharding data: hash (also known as consistent hash) sharding, and range sharding.

Hash sharding

With (consistent) hash sharding, a sharding algorithm distributes data evenly and randomly across shards. The algorithm places each row of the table into a shard determined by computing a consistent hash on the hash column values of that row.

The hash space for hash-sharded YugabyteDB tables is the 2-byte range from 0x0000 to 0xFFFF. A table may therefore have at most 65,536 tablets. This is expected to be sufficient in practice even for very large data sets or cluster sizes.

For example, for a table with 16 tablets the overall hash space of 0x0000 to 0xFFFF is divided into 16 sub-ranges, one for each tablet: 0x0000 to 0x1000, 0x1000 to 0x2000, and so on up to 0xF000 to 0xFFFF. Read and write operations are processed by converting the primary key into an internal key and its hash value, and determining the tablet to which the operation should be routed.

Hash sharding is ideal for massively scalable workloads, as it distributes data evenly across all the nodes in the cluster, while retaining ease of adding nodes into the cluster.

With consistent hash sharding, there are many more shards than the number of nodes and there is an explicit mapping table maintained tracking the assignment of shards to nodes. When adding new nodes, a subset of shards from existing nodes can be efficiently moved into the new nodes without requiring a massive data reassignment.

A potential downside of hash sharding is that performing range queries could be inefficient. Examples of range queries are finding rows greater than a lower bound or less than an upper bound (as opposed to point lookups).

Hash sharding example

In YSQL, create a table with hash sharding:

CREATE TABLE customers (
    customer_id bpchar NOT NULL,
    company_name character varying(40) NOT NULL,
    contact_name character varying(30),
    contact_title character varying(30),
    address character varying(60),
    city character varying(15),
    region character varying(15),
    postal_code character varying(10),
    country character varying(15),
    phone character varying(24),
    fax character varying(24),
    PRIMARY KEY (customer_id HASH)
);

In YCQL, you can only create tables with hash sharding, so an explict syntax for setting hash sharding is not necessary.

CREATE TABLE items (
    supplier_id INT,
    item_id INT,
    supplier_name TEXT STATIC,
    item_name TEXT,
    PRIMARY KEY((supplier_id), item_id)
);

Range sharding

Range sharding involves splitting the rows of a table into contiguous ranges, based on the primary key column values. Range-sharded tables usually start out with a single shard. As data is inserted into the table, it is dynamically split into multiple shards because it is not always possible to know the distribution of keys in the table ahead of time.

This type of sharding allows efficiently querying a range of rows by the primary key values. Examples of such a query is to look up all keys that lie between a lower bound and an upper bound.

Range sharding has a few issues at scale, including:

  • Starting out with a single shard means that a single node is handling all user queries.



    This often results in a database “warming” problem, where all queries are handled by a single node even if there are multiple nodes in the cluster. The user would have to wait for enough splits to happen and these shards to get redistributed before all nodes in the cluster are being utilized. This can be a big issue in production workloads. This can be mitigated in some cases where the distribution is keys is known ahead of time by presplitting the table into multiple shards, however this is hard in practice.

  • Globally ordering keys across all the shards often generates hot spots, in which some shards get much more activity than others.



    Nodes hosting hot spots are overloaded relative to others. You can mitigate this to some extent with active load balancing, but this does not always work well in practice: by the time hot shards are redistributed across nodes, the workload may have changed and introduced new hot spots.

Range sharding example

In YSQL, create a table with range sharding:

CREATE TABLE order_details (
    order_id smallint NOT NULL,
    product_id smallint NOT NULL,
    unit_price real NOT NULL,
    quantity smallint NOT NULL,
    discount real NOT NULL,
    PRIMARY KEY (order_id ASC, product_id),
    FOREIGN KEY (product_id) REFERENCES products,
    FOREIGN KEY (order_id) REFERENCES orders
);

In YCQL, you can't create tables with range sharding. YCQL tables are always hash sharded.

Try it out

In this tutorial, you'll explore automatic sharding inside YugabyteDB. First, you'll create some tables to understand how automatic sharding works. Then, you'll insert entries one by one, and examine how the data gets distributed across the various nodes.

This tutorial uses the yugabyted cluster management utility.

Create a universe

To create a universe, do the following:

  1. Let’s begin by creating a single node cluster. Run the following command.

    $ ./bin/yugabyted start \
                      --base_dir=/tmp/ybd1 \
                      --listen=127.0.0.1 \
                      --tserver_flags "memstore_size_mb=1"
    
    • memstore_size_mb=1 sets the total size of memstores on the tablet-servers to 1MB. This will force a flush of the data to disk when a value greater than 1MB is added, so that you can observe which tablets the data is written to.
  2. Add two more nodes to make this a 3-node by joining them with the previous node. You need to pass the memstore_size flag to each of the added YB-TServer servers.

    $ ./bin/yugabyted start \
                      --base_dir=/tmp/ybd2 \
                      --listen=127.0.0.2 \
                      --join=127.0.0.1 \
                      --tserver_flags "memstore_size_mb=1"
    
    $ ./bin/yugabyted start \
                      --base_dir=/tmp/ybd3 \
                      --listen=127.0.0.3 \
                      --join=127.0.0.1 \
                      --tserver_flags "memstore_size_mb=1"
    

Warning

Setting memstore_size to such a low value is not recommended in production, and is only being used here to illustrate the point by forcing flushes to happen more quickly.

Create a table

Once you've got your nodes set up, you can create a YCQL table. Since you'll be using a workload application in the YugabyteDB workload generator to write data into this table, create the keyspace and table name below exactly as shown.

$ ./bin/ycqlsh
ycqlsh> CREATE KEYSPACE ybdemo_keyspace;
ycqlsh> CREATE TABLE ybdemo_keyspace.cassandrakeyvalue (k text PRIMARY KEY, v blob);

By default, yugabyted creates one tablet per node per table. So for a 3 node cluster, 3 tablets are created for the above table; one on every node. Every such tablet is replicated 3 times for fault tolerance, so that makes the total number of nodes to be 3*3=9. Every node thus contains 3 tablets, one of which it is the leader and the remaining 2 of which it is the follower.

Explore tablets

  • The tablets are evenly balanced across the various nodes. You can see the number of tablets per node in the Tablet Servers page of the master Admin UI, by going to the table details page. The page should look something like the image below.

    Number of tablets in the table

    Notice that each node has 3 tablets, and the total number of tablets is 9 as expected. Out of these 3, it is the leader of 1 and follower of other 2.

  • The table has 3 shards, each owning a range of the keyspace. Navigate to the table details page to examine the various tablets. This page should look as follows.

    Tablet details of the table

    There are 3 shards as expected, and the key ranges owned by each tablet are shown. This page also shows which node is currently hosting (and is the leader for) each tablet. Note here that tablet balancing across nodes happens on a per-table basis, with each table scaled out to an appropriate number of nodes.

  • Each tablet has a separate directory dedicated to it for data. List out all the tablet directories and check their sizes, as follows:

  1. First get the table-id of the table you created by going to the table listing page and accessing the row corresponding to ybdemo_keyspace.cassandrakeyvalue. In this illustration, the table-id is 769f533fbde9425a8520b9cd59efc8b8.

    Id of the created table

  2. Next, you can view all the tablet directories and their sizes for this table by running the following command. Remember to replace the id with your corresponding id.

    $ du -hs /tmp/ybd*/data/yb-data/tserver/data/rocksdb/table-769f533fbde9425a8520b9cd59efc8b8/* | grep -v '0B'
    
    28K	/tmp/ybd1/data/yb-data/tserver/data/rocksdb/table-769f533fbde9425a8520b9cd59efc8b8/tablet-0149071638294c5d9328c4121ad33d23
    28K	/tmp/ybd1/data/yb-data/tserver/data/rocksdb/table-769f533fbde9425a8520b9cd59efc8b8/tablet-0df2c7cd87a844c99172ea1ebcd0a3ee
    28K	/tmp/ybd1/data/yb-data/tserver/data/rocksdb/table-769f533fbde9425a8520b9cd59efc8b8/tablet-59b7d53724944725a1e3edfe9c5a1440
    28K	/tmp/ybd2/data/yb-data/tserver/data/rocksdb/table-769f533fbde9425a8520b9cd59efc8b8/tablet-0149071638294c5d9328c4121ad33d23
    28K	/tmp/ybd2/data/yb-data/tserver/data/rocksdb/table-769f533fbde9425a8520b9cd59efc8b8/tablet-0df2c7cd87a844c99172ea1ebcd0a3ee
    28K	/tmp/ybd2/data/yb-data/tserver/data/rocksdb/table-769f533fbde9425a8520b9cd59efc8b8/tablet-59b7d53724944725a1e3edfe9c5a1440
    28K	/tmp/ybd3/data/yb-data/tserver/data/rocksdb/table-769f533fbde9425a8520b9cd59efc8b8/tablet-0149071638294c5d9328c4121ad33d23
    28K	/tmp/ybd3/data/yb-data/tserver/data/rocksdb/table-769f533fbde9425a8520b9cd59efc8b8/tablet-0df2c7cd87a844c99172ea1ebcd0a3ee
    28K	/tmp/ybd3/data/yb-data/tserver/data/rocksdb/table-769f533fbde9425a8520b9cd59efc8b8/tablet-59b7d53724944725a1e3edfe9c5a1440
    

    There are nine entries, one corresponding to each tablet with 28K bytes as the size.

Insert and query a table

In this section, you'll use a sample app to insert a key-value entry with the value size around 10MB. Since the memstores are configured to be 1MB, this causes the data to flush to disk immediately.

The key flags you pass to the sample app are:

  • --num_unique_keys 1 to write exactly one key. Keys are numbers converted to text, and typically start from 0.
  • --num_threads_read 0 to not perform any reads (hence 0 read threads).
  • --num_threads_write 1 creates one writer thread. Since you're not writing a lot of data, a single writer thread is sufficient.
  • --value_size 10000000 to generate the value being written as a random byte string of around 10MB size.
  • --nouuid to not prefix a UUID to the key. A UUID allows multiple instances of the load tester to run without interfering with each other.

Let's get started:

  1. Download the YugabyteDB workload generator JAR file (yb-sample-apps.jar):

    $ wget https://github.com/yugabyte/yb-sample-apps/releases/download/1.3.9/yb-sample-apps.jar
    
  2. Run the CassandraKeyValue workload application.

    $ java -jar ./yb-sample-apps.jar --workload CassandraKeyValue \
                                        --nodes 127.0.0.1:9042 \
                                        --nouuid \
                                        --num_unique_keys 1 \
                                        --num_writes 2 \
                                        --num_threads_read 0 \
                                        --num_threads_write 1 \
                                        --value_size 10000000
    
    0 [main] INFO com.yugabyte.sample.Main  - Starting sample app...
    ...
    38 [main] INFO com.yugabyte.sample.common.CmdLineOpts  - Num unique keys to insert: 1
    38 [main] INFO com.yugabyte.sample.common.CmdLineOpts  - Num keys to update: 1
    38 [main] INFO com.yugabyte.sample.common.CmdLineOpts  - Num keys to read: -1
    38 [main] INFO com.yugabyte.sample.common.CmdLineOpts  - Value size: 10000000
    ...
    4360 [main] INFO com.yugabyte.sample.Main  - The sample app has finished
    
  3. Check what you've inserted using ycqlsh.

    $ ./bin/ycqlsh
    
    ycqlsh> SELECT k FROM ybdemo_keyspace.cassandrakeyvalue;
    
    k
    -------
    key:0
    
    (1 rows)
    
  4. Next, check the sizes of the various tablets:

    $ du -hs /tmp/ybd*/data/yb-data/tserver/data/rocksdb/table-769f533fbde9425a8520b9cd59efc8b8/* | grep -v '0B'
    
    28K	/tmp/ybd2/data/yb-data/tserver/data/rocksdb/table-769f533fbde9425a8520b9cd59efc8b8/tablet-0149071638294c5d9328c4121ad33d23
    9.6M    /tmp/ybd1/data/yb-data/tserver/data/rocksdb/table-769f533fbde9425a8520b9cd59efc8b8/tablet-0df2c7cd87a844c99172ea1ebcd0a3ee
    28K	/tmp/ybd1/data/yb-data/tserver/data/rocksdb/table-769f533fbde9425a8520b9cd59efc8b8/tablet-59b7d53724944725a1e3edfe9c5a1440
    28K	/tmp/ybd2/data/yb-data/tserver/data/rocksdb/table-769f533fbde9425a8520b9cd59efc8b8/tablet-0149071638294c5d9328c4121ad33d23
    9.6M    /tmp/ybd2/data/yb-data/tserver/data/rocksdb/table-769f533fbde9425a8520b9cd59efc8b8/tablet-0df2c7cd87a844c99172ea1ebcd0a3ee
    28K	/tmp/ybd2/data/yb-data/tserver/data/rocksdb/table-769f533fbde9425a8520b9cd59efc8b8/tablet-59b7d53724944725a1e3edfe9c5a1440
    28K	/tmp/ybd3/data/yb-data/tserver/data/rocksdb/table-769f533fbde9425a8520b9cd59efc8b8/tablet-0149071638294c5d9328c4121ad33d23
    9.6M    /tmp/ybd3/data/yb-data/tserver/data/rocksdb/table-769f533fbde9425a8520b9cd59efc8b8/tablet-0df2c7cd87a844c99172ea1ebcd0a3ee
    28K	/tmp/ybd3/data/yb-data/tserver/data/rocksdb/table-769f533fbde9425a8520b9cd59efc8b8/tablet-59b7d53724944725a1e3edfe9c5a1440
    

You can see that the key was successfully inserted in one of the tablets leading to a proliferation of size to 9.6 MB. Because this tablet has 3 copies distributed across the 3 nodes, you can see 3 entries of this size.

Here, the key has been written to one of the tablets. In this example, the tablet's UUID is 0df2c7cd87a844c99172ea1ebcd0a3ee. Check the table details page to determine which node this tablet belongs to, and in this case it's node-1.

Tablet ownership with auto-sharding

Automatic sharding when adding nodes

  1. Add one more node to the universe for a total of 4 nodes:

    $ ./bin/yugabyted start \
                      --base_dir=/tmp/ybd4 \
                      --listen=127.0.0.4 \
                      --join=127.0.0.1 \
                      --tserver_flags "memstore_size_mb=1"
    
  2. Check the tablet servers page, to see that the tablets are re-distributed evenly among the 4 nodes:

    Auto-sharding when adding one node

  3. Add 2 more nodes to the universe, making it a total of 6 nodes:

    $ ./bin/yugabyted start \
                      --base_dir=/tmp/ybd5 \
                      --listen=127.0.0.5 \
                      --join=127.0.0.1 \
                      --tserver_flags "memstore_size_mb=1"
    
    $ ./bin/yugabyted start \
                      --base_dir=/tmp/ybd5 \
                      --listen=127.0.0.5 \
                      --join=127.0.0.1 \
                      --tserver_flags "memstore_size_mb=1"
    
  4. Verify that the tablets are evenly distributed across the 6 nodes. Each node now has 2 tablets.

    Auto-sharding when adding three nodes

[Optional] Clean up

If you're done experimenting, run the following commands to shut down the local cluster:

$ ./bin/yugabyted destroy \
                  --base_dir=/tmp/ybd1
$ ./bin/yugabyted destroy \
                  --base_dir=/tmp/ybd2
$ ./bin/yugabyted destroy \
                  --base_dir=/tmp/ybd3
$ ./bin/yugabyted destroy \
                  --base_dir=/tmp/ybd4
$ ./bin/yugabyted destroy \
                  --base_dir=/tmp/ybd5
$ ./bin/yugabyted destroy \
                  --base_dir=/tmp/ybd6

Further reading

To learn more about sharding in YugabyteDB, you may wish to read the architecture documentation, or the following blog posts:

How Data Sharding Works in a Distributed SQL Database

Four Data Sharding Strategies We Analyzed in Building a Distributed SQL Database

Overcoming MongoDB Sharding and Replication Limitations with YugabyteDB

  • Sharding strategies
    • Hash sharding
    • Range sharding
  • Try it out
    • Create a universe
    • Create a table
    • Explore tablets
    • Insert and query a table
    • Automatic sharding when adding nodes
    • [Optional] Clean up
  • Further reading
Ask our community
  • Slack
  • Github
  • Forum
  • StackOverflow
Yugabyte
Contact Us
Copyright © 2017-2022 Yugabyte, Inc. All rights reserved.