Join us on YugabyteDB Community Slack
Star us on
Get Started
Slack
GitHub
Get Started
v2.13 (latest) v2.12 (stable) v2.8 (earlier version) v2.6 (earlier version) v2.4 (earlier version) v2.2 (earlier version) v2.1 (earlier version) v2.0 (earlier version) v1.3 (earlier version)
  • YUGABYTEDB CORE
    • Quick start
      • 1. Install YugabyteDB
      • 2. Create a local cluster
      • 3. Explore distributed SQL
      • 4. Build an application
        • Java
        • Node.js
        • Go
        • Python
        • Ruby
        • C#
        • PHP
        • C++
        • C
        • Scala
    • Explore
      • SQL features
        • Schemas and Tables
        • Data Types
        • Data Manipulation
        • Queries and Joins
        • Expressions and Operators
        • Stored Procedures
        • Triggers
        • Advanced features
          • Cursors
          • Table Partitioning
          • Views
          • Savepoints
          • Collations
          • Extensions
        • Going beyond SQL
          • Follower reads
          • Tablespaces
      • Fault tolerance
      • Horizontal scalability
        • Scaling Transactions
        • Sharding Data
      • Transactions
        • Distributed Transactions
        • Isolation Levels
        • Explicit Locking
      • Indexes and Constraints
        • Overview
        • Unique Indexes
        • Partial Indexes
        • Expression Indexes
        • Generalized Inverted Indexes
        • Primary Key
        • Foreign Key
        • Other Constraints
      • JSON support
      • Multi-region deployments
        • Sync replication (3+ regions)
        • Async Replication (2+ regions)
        • Row-Level Geo-Partitioning
        • Read replicas
      • Query tuning
        • Introduction
        • Get query statistics using pg_stat_statements
        • Viewing live queries with pg_stat_activity
        • Analyzing queries with EXPLAIN
        • Optimizing YSQL queries using pg_hint_plan
      • Cluster management
        • Point-in-time recovery
      • Security
      • Observability
        • Prometheus Integration
        • Grafana Dashboard
    • Develop
      • Learn app development
        • 1. SQL vs NoSQL
        • 2. Data modeling
        • 3. Data types
        • 4. ACID transactions
        • 5. Aggregations
        • 6. Batch operations
        • 7. Date and time
        • 8. Strings and text
        • 9. TTL for data expiration
      • Real-world examples
        • E-Commerce app
        • IoT fleet management
      • Explore sample apps
      • Best practices
      • Cloud-native development
        • Codespaces
        • Gitpod
    • Migrate
      • Migration process overview
      • Migrate from PostgreSQL
        • Convert a PostgreSQL schema
        • Migrate a PostgreSQL application
        • Export PostgreSQL data
        • Prepare a cluster
        • Import PostgreSQL data
        • Verify Migration
    • Deploy
      • Deployment checklist
      • Manual deployment
        • 1. System configuration
        • 2. Install software
        • 3. Start YB-Masters
        • 4. Start YB-TServers
        • 5. Verify deployment
      • Kubernetes
        • Single-zone
          • Open Source
          • Amazon EKS
          • Google Kubernetes Engine
          • Azure Kubernetes Service
        • Multi-zone
          • Amazon EKS
          • Google Kubernetes Engine
        • Multi-cluster
          • Google Kubernetes Engine
        • Best practices
        • Connect Clients
      • Docker
      • Public clouds
        • Amazon Web Services
        • Google Cloud Platform
        • Microsoft Azure
      • Multi-DC deployments
        • Three+ data center (3DC)
        • Asynchronous Replication
        • Read replica clusters
    • Benchmark
      • TPC-C
      • sysbench
      • YCSB
      • Key-value workload
      • Large datasets
      • Scalability
        • Scaling queries
      • Resilience
        • Jepsen testing
      • Performance Troubleshooting
    • Secure
      • Security checklist
      • Enable Authentication
        • Enable User Authentication
        • Configure ysql_hba_conf_csv
      • Authentication Methods
        • Password Authentication
        • LDAP Authentication
        • Host-Based Authentication
        • Trust Authentication
      • Role-Based Access Control
        • Overview
        • Manage Users and Roles
        • Grant Privileges
        • Row-Level Security (RLS)
        • Column-Level Security
      • Encryption in Transit
        • Create server certificates
        • Enable server-to-server encryption
        • Enable client-to-server encryption
        • Connect to Clusters
        • TLS and authentication
      • Encryption at rest
      • Column-level encryption
      • Audit Logging
        • Configure Audit Logging
        • Session-Level Audit Logging
        • Object-Level Audit Logging
      • Vulnerability disclosure policy
    • Manage
      • Back up and restore
        • Back up data
        • Restore data
        • Point-in-time recovery
        • Snapshot and restore data
      • Migrate data
        • Bulk import
        • Bulk export
      • Change cluster configuration
      • Diagnostics reporting
      • Upgrade a deployment
      • Grow cluster
    • Troubleshoot
      • Troubleshooting
      • Cluster level issues
        • YCQL connection issues
        • YEDIS connection Issues
        • Recover tserver/master
        • Replace a failed YB-TServer
        • Replace a failed YB-Master
        • Manual remote bootstrap when a majority of peers fail
      • Node level issues
        • Check servers
        • Inspect logs
        • System statistics
        • Disk failure
        • Common error messages
    • Contribute
      • Core database
        • Contribution checklist
        • Build the source
        • Configure a CLion project
        • Run the tests
        • Coding style
  • YUGABYTE PLATFORM
    • Overview
      • Install
      • Configure
    • Install Yugabyte Platform
      • Prerequisites
      • Prepare the environment
      • Install software
      • Prepare nodes (on-prem)
      • Uninstall software
    • Configure Yugabyte Platform
      • Create admin user
      • Configure the cloud provider
      • Configure the backup target
      • Configure alerts
    • Create deployments
      • Multi-zone universe
      • Multi-region universe
      • Multi-cloud universe
      • Read replica cluster
      • Asynchronous replication
    • Manage deployments
      • Start and stop processes
      • Add a node
      • Eliminate an unresponsive node
      • Enable high availability
      • Edit configuration flags
      • Edit a universe
      • Delete a universe
      • Configure instance tags
      • Upgrade YugabyteDB software
      • Migrate to Helm 3
    • Back up universes
      • Configure backup storage
      • Back up universe data
      • Restore universe data
      • Schedule data backups
    • Security
      • Security checklist
      • Customize ports
      • LDAP authentication
      • Authorization platform
      • Create a KMS configuration
      • Enable encryption at rest
      • Enable encryption in transit (TLS)
      • Network security
    • Alerts and monitoring
      • Alerts
      • Live Queries dashboard
      • Slow Queries dashboard
    • Troubleshoot
      • Install and upgrade issues
      • Universe issues
    • Administer Yugabyte Platform
      • Back Up Yugabyte Platform
      • Authenticate with LDAP
    • Upgrade Yugabyte Platform
      • Upgrade using Replicated
  • YUGABYTE CLOUD
    • Overview
    • Quick start
      • Create a free cluster
      • Connect to the cluster
      • Create a database
      • Explore distributed SQL
      • Build an application
        • Before you begin
        • Java
        • Go
        • Python
        • Node.js
        • C
        • C++
        • C#
        • Ruby
        • Rust
        • PHP
    • Deploy clusters
      • Planning a cluster
      • Create a free cluster
      • Create a standard cluster
      • VPC network
        • Overview
        • Set up a VPC network
        • VPCs
        • Peering Connections
    • Secure clusters
      • IP allow lists
      • Database authorization
      • Add database users
      • Encryption in transit
      • Audit cloud activity
    • Connect to clusters
      • Cloud Shell
      • Client shell
      • Connect applications
    • Alerts and monitoring
      • Alerts
      • Performance metrics
      • Live queries
      • Slow YSQL queries
      • Cluster activity
    • Manage clusters
      • Backup and restore
      • Scale and configure clusters
      • Create extensions
    • Administer Yugabyte Cloud
      • Manage cloud users
      • Manage billing
      • Cluster costs
    • Example applications
      • Connect a Spring application
      • Connect a YCQL Java application
      • Hasura Cloud
      • Deploy a GraphQL application
    • Security architecture
      • Security architecture
      • Shared responsibility model
    • Troubleshoot
    • Yugabyte Cloud FAQ
    • What's new
  • INTEGRATIONS
    • Apache Kafka
    • Apache Spark
    • JanusGraph
    • KairosDB
    • Presto
    • Metabase
    • WSO2 Identity Server
    • YSQL Loader
    • Yugabyte JDBC Driver
    • Prisma
    • Hasura
      • Application Development
      • Benchmarking
    • Spring Framework
      • Spring Data YugabyteDB
      • Spring Data Cassandra
    • Flyway
    • GORM
    • Liquibase
    • Sequelize
    • SQLAlchemy
    • Entity Framework
    • Django REST framework
  • REFERENCE
    • Architecture
      • Design goals
      • Key concepts
        • Universe
        • YB-TServer Service
        • YB-Master Service
      • Core functions
        • Universe creation
        • Table creation
        • Write IO path
        • Read IO path
        • High availability
      • Layered architecture
      • Query layer
        • Overview
      • DocDB transactions layer
        • Transactions overview
        • Transaction isolation levels
        • Explicit locking
        • Read Committed
        • Single-row transactions
        • Distributed transactions
        • Transactional IO path
      • DocDB sharding layer
        • Hash & range sharding
        • Tablet splitting
        • Colocated tables
      • DocDB replication layer
        • Replication
        • xCluster replication
        • Read replicas
        • Change data capture (CDC)
      • DocDB storage layer
        • Persistence
        • Performance
    • APIs
      • YSQL
        • The SQL language
          • SQL statements
            • ABORT
            • ALTER DATABASE
            • ALTER DEFAULT PRIVILEGES
            • ALTER DOMAIN
            • ALTER GROUP
            • ALTER POLICY
            • ALTER ROLE
            • ALTER SEQUENCE
            • ALTER TABLE
            • ALTER USER
            • ANALYZE
            • BEGIN
            • CALL
            • COMMENT
            • COMMIT
            • COPY
            • CREATE AGGREGATE
            • CREATE CAST
            • CREATE DATABASE
            • CREATE DOMAIN
            • CREATE EXTENSION
            • CREATE FUNCTION
            • CREATE GROUP
            • CREATE INDEX
            • CREATE MATERIALIZED VIEW
            • CREATE OPERATOR
            • CREATE OPERATOR CLASS
            • CREATE POLICY
            • CREATE PROCEDURE
            • CREATE ROLE
            • CREATE RULE
            • CREATE SCHEMA
            • CREATE SEQUENCE
            • CREATE TABLE
            • CREATE TABLE AS
            • CREATE TRIGGER
            • CREATE TYPE
            • CREATE USER
            • CREATE VIEW
            • DEALLOCATE
            • DELETE
            • DO
            • DROP AGGREGATE
            • DROP CAST
            • DROP DATABASE
            • DROP DOMAIN
            • DROP EXTENSION
            • DROP FUNCTION
            • DROP GROUP
            • DROP MATERIALIZED VIEW
            • DROP OPERATOR
            • DROP OPERATOR CLASS
            • DROP OWNED
            • DROP POLICY
            • DROP PROCEDURE
            • DROP ROLE
            • DROP RULE
            • DROP SEQUENCE
            • DROP TABLE
            • DROP TRIGGER
            • DROP TYPE
            • DROP USER
            • END
            • EXECUTE
            • EXPLAIN
            • GRANT
            • INSERT
            • LOCK
            • PREPARE
            • REASSIGN OWNED
            • REFRESH MATERIALIZED VIEW
            • RELEASE SAVEPOINT
            • RESET
            • REVOKE
            • ROLLBACK
            • ROLLBACK TO SAVEPOINT
            • SAVEPOINT
            • SELECT
            • SET
            • SET CONSTRAINTS
            • SET ROLE
            • SET SESSION AUTHORIZATION
            • SET TRANSACTION
            • SHOW
            • SHOW TRANSACTION
            • TRUNCATE
            • UPDATE
            • VALUES
          • WITH clause
            • WITH clause—SQL syntax and semantics
            • recursive CTE
            • case study—traversing an employee hierarchy
            • traversing general graphs
              • graph representation
              • common code
              • undirected cyclic graph
              • directed cyclic graph
              • directed acyclic graph
              • rooted tree
              • Unique containing paths
              • Stress testing find_paths()
            • case study—Bacon Numbers from IMDb
              • Bacon numbers for synthetic data
              • Bacon numbers for IMDb data
        • Data types
          • Array
            • array[] constructor
            • Literals
              • Text typecasting and literals
              • Array of primitive values
              • Row
              • Array of rows
            • FOREACH loop (PL/pgSQL)
            • array of DOMAINs
            • Functions and operators
              • ANY and ALL
              • Array comparison
              • Array slice operator
              • Array concatenation
              • Array properties
              • array_agg(), unnest(), generate_subscripts()
              • array_fill()
              • array_position(), array_positions()
              • array_remove()
              • array_replace() / set value
              • array_to_string()
              • string_to_array()
          • Binary
          • Boolean
          • Character
          • Date and time
            • Conceptual background
            • Timezones and UTC offsets
              • Catalog views
              • Extended_timezone_names
                • Unrestricted full projection
                • Real timezones with DST
                • Real timezones no DST
                • Synthetic timezones no DST
              • Offset/timezone-sensitive operations
                • Timestamptz to/from timestamp conversion
                • Pure 'day' interval arithmetic
              • Four ways to specify offset
                • Name-resolution rules
                  • 1 case-insensitive resolution
                  • 2 ~names.abbrev never searched
                  • 3 'set timezone' string not resolved in ~abbrevs.abbrev
                  • 4 ~abbrevs.abbrev before ~names.name
                  • Helper functions
              • Syntax contexts for offset
              • Recommended practice
            • Typecasting between date-time and text-values
            • Semantics of the date-time data types
              • Date data type
              • Time data type
              • Plain timestamp and timestamptz
              • Interval data type
                • Interval representation
                  • Ad hoc examples
                  • Representation model
                • Interval value limits
                • Declaring intervals
                • Justify() and extract(epoch...)
                • Interval arithmetic
                  • Interval-interval comparison
                  • Interval-interval addition and subtraction
                  • Interval-number multiplication
                  • Moment-moment overloads of "-"
                  • Moment-interval overloads of "+" and "-"
                • Custom interval domains
                • Interval utility functions
            • Typecasting between date-time datatypes
            • Operators
              • Test comparison overloads
              • Test addition overloads
              • Test subtraction overloads
              • Test multiplication overloads
              • Test division overloads
            • General-purpose functions
              • Creating date-time values
              • Manipulating date-time values
              • Current date-time moment
              • Delaying execution
              • Miscellaneous
                • Function age()
                • Function extract() | date_part()
                • Implementations that model the overlaps operator
            • Formatting functions
            • Case study—SQL stopwatch
            • Download & install the date-time utilities
            • ToC
          • JSON
            • JSON literals
            • Primitive and compound data types
            • Code example conventions
            • Indexes and check constraints
            • Functions & operators
              • ::jsonb, ::json, ::text (typecast)
              • ->, ->>, #>, #>> (JSON subvalues)
              • - and #- (remove)
              • || (concatenation)
              • = (equality)
              • @> and <@ (containment)
              • ? and ?| and ?& (key or value existence)
              • array_to_json()
              • jsonb_agg()
              • jsonb_array_elements()
              • jsonb_array_elements_text()
              • jsonb_array_length()
              • jsonb_build_object()
              • jsonb_build_array()
              • jsonb_each()
              • jsonb_each_text()
              • jsonb_extract_path()
              • jsonb_extract_path_text() and json_extract_path_text()
              • jsonb_object()
              • jsonb_object_agg()
              • jsonb_object_keys()
              • jsonb_populate_record()
              • jsonb_populate_recordset()
              • jsonb_pretty()
              • jsonb_set() and jsonb_insert()
              • jsonb_strip_nulls()
              • jsonb_to_record()
              • jsonb_to_recordset()
              • jsonb_typeof()
              • row_to_json()
              • to_jsonb()
          • Money
          • Numeric
          • Range
          • Serial
          • UUID
        • Functions and operators
          • Aggregate functions
            • Informal functionality overview
            • Invocation syntax and semantics
            • grouping sets, rollup, cube
            • Per function signature and purpose
              • avg(), count(), max(), min(), sum()
              • array_agg(), string_agg(), jsonb_agg(), jsonb_object_agg()
              • bit_and(), bit_or(), bool_and(), bool_or()
              • variance(), var_pop(), var_samp(), stddev(), stddev_pop(), stddev_samp()
              • linear regression
                • covar_pop(), covar_samp(), corr()
                • regr_%()
              • mode(), percentile_disc(), percentile_cont()
              • rank(), dense_rank(), percent_rank(), cume_dist()
            • case study—percentile_cont() and the "68–95–99.7" rule
            • case study—linear regression on COVID data
              • Download the COVIDcast data
              • Ingest the COVIDcast data
                • Inspect the COVIDcast data
                • Copy the .csv files to staging tables
                • Check staged data conforms to the rules
                • Join the staged data into a single table
                • SQL scripts
                  • Create cr_staging_tables()
                  • Create cr_copy_from_scripts()
                  • Create assert_assumptions_ok()
                  • Create xform_to_covidcast_fb_survey_results()
                  • ingest-the-data.sql
              • Analyze the COVIDcast data
                • symptoms vs mask-wearing by day
                • Data for scatter-plot for 21-Oct-2020
                • Scatter-plot for 21-Oct-2020
                • SQL scripts
                  • analysis-queries.sql
                  • synthetic-data.sql
          • currval()
          • lastval()
          • nextval()
          • Window functions
            • Informal functionality overview
            • Invocation syntax and semantics
            • Per function signature and purpose
              • row_number(), rank() and dense_rank()
              • percent_rank(), cume_dist() and ntile()
              • first_value(), nth_value(), last_value()
              • lag(), lead()
              • Tables for the code examples
                • table t1
                • table t2
                • table t3
                • table t4
            • case study—analyzing a normal distribution
              • Bucket allocation scheme
              • do_clean_start.sql
              • cr_show_t4.sql
              • cr_dp_views.sql
              • cr_int_views.sql
              • cr_pr_cd_equality_report.sql
              • cr_bucket_using_width_bucket.sql
              • cr_bucket_dedicated_code.sql
              • do_assert_bucket_ok
              • cr_histogram.sql
              • cr_do_ntile.sql
              • cr_do_percent_rank.sql
              • cr_do_cume_dist.sql
              • do_populate_results.sql
              • do_report_results.sql
              • do_compare_dp_results.sql
              • do_demo.sql
              • Reports
                • Histogram report
                • dp-results
                • compare-dp-results
                • int-results
          • yb_hash_code()
        • Extensions
        • Keywords
        • Reserved names
      • YCQL
        • ALTER KEYSPACE
        • ALTER ROLE
        • ALTER TABLE
        • CREATE INDEX
        • CREATE KEYSPACE
        • CREATE ROLE
        • CREATE TABLE
        • CREATE TYPE
        • DROP INDEX
        • DROP KEYSPACE
        • DROP ROLE
        • DROP TABLE
        • DROP TYPE
        • GRANT PERMISSION
        • GRANT ROLE
        • REVOKE PERMISSION
        • REVOKE ROLE
        • USE
        • INSERT
        • SELECT
        • EXPLAIN
        • UPDATE
        • DELETE
        • TRANSACTION
        • TRUNCATE
        • Simple expressions
        • Subscripted expressions
        • Function call
        • Operators
        • BLOB
        • BOOLEAN
        • Collection
        • FROZEN
        • INET
        • Integer and counter
        • Non-integer
        • TEXT
        • DATE, TIME, and TIMESTAMP
        • UUID and TIMEUUID
        • JSONB
        • Date and time
        • BATCH
    • CLIs
      • yb-ctl
      • yb-docker-ctl
      • ysqlsh
      • ycqlsh
      • yb-admin
      • yb-ts-cli
      • ysql_dump
      • ysql_dumpall
    • Configuration
      • yb-tserver
      • yb-master
      • yugabyted
      • Default ports
    • Drivers
      • Client drivers for YSQL
      • Client drivers for YCQL
    • Connectors
      • Kafka Connect YugabyteDB
    • Third party tools
      • Arctype
      • DBeaver
      • DbSchema
      • pgAdmin
      • SQL Workbench/J
      • TablePlus
      • Visual Studio Code
    • Sample datasets
      • Chinook
      • Northwind
      • PgExercises
      • SportsDB
      • Retail Analytics
  • RELEASES
    • Releases overview
      • v2.13 series (latest)
      • v2.12 series (stable)
      • v2.11 series
      • v2.9 series
      • v2.8 series
      • v2.7 series
      • v2.6 series
      • v2.5 series
      • v2.4 series
      • v2.3 series
      • v2.2 series
      • v2.1 series
      • v2.0 series
      • v1.3 series
      • v1.2 series
    • Release versioning
  • FAQ
    • Comparisons
      • Amazon Aurora
      • Google Cloud Spanner
      • CockroachDB
      • TiDB
      • Vitess
      • MongoDB
      • FoundationDB
      • Amazon DynamoDB
      • Azure Cosmos DB
      • Apache Cassandra
      • PostgreSQL
      • Redis in-memory store
      • Apache HBase
    • General FAQ
    • Operations FAQ
    • API compatibility FAQ
    • Yugabyte Platform FAQ
  • MISC
    • YEDIS
      • Quick start
      • Develop
        • Build an application
        • C#
        • C++
        • Go
        • Java
        • NodeJS
        • Python
      • API reference
        • APPEND
        • AUTH
        • CONFIG
        • CREATEDB
        • DELETEDB
        • LISTDB
        • SELECT
        • DEL
        • ECHO
        • EXISTS
        • EXPIRE
        • EXPIREAT
        • FLUSHALL
        • FLUSHDB
        • GET
        • GETRANGE
        • GETSET
        • HDEL
        • HEXISTS
        • HGET
        • HGETALL
        • HINCRBY
        • HKEYS
        • HLEN
        • HMGET
        • HMSET
        • HSET
        • HSTRLEN
        • HVALS
        • INCR
        • INCRBY
        • KEYS
        • MONITOR
        • PEXPIRE
        • PEXPIREAT
        • PTTL
        • ROLE
        • SADD
        • SCARD
        • RENAME
        • SET
        • SETEX
        • PSETEX
        • SETRANGE
        • SISMEMBER
        • SMEMBERS
        • SREM
        • STRLEN
        • ZRANGE
        • TSADD
        • TSCARD
        • TSGET
        • TSLASTN
        • TSRANGEBYTIME
        • TSREM
        • TSREVRANGEBYTIME
        • TTL
        • ZADD
        • ZCARD
        • ZRANGEBYSCORE
        • ZREM
        • ZREVRANGE
        • ZSCORE
        • PUBSUB
        • PUBLISH
        • SUBSCRIBE
        • UNSUBSCRIBE
        • PSUBSCRIBE
        • PUNSUBSCRIBE
    • Legal
      • Third party software
> Explore >

JSON Support

Report a doc issue Suggest new content
  • 1. Prerequisites
  • 2. Query JSON documents
    • Using -> and ->>
    • Existence with ?
    • Containment with @>
  • 3. Update JSON documents
    • Add an attribute
    • Remove an attribute
    • Replace a document
  • 4. Built-in functions
    • Expand JSON - jsonb_each
    • Retrieve keys - jsonb_object_keys
    • Format JSON - jsonb_pretty
  • 5. Constraints
    • Check JSON documents are objects
    • Check ISBN is a 13-digit number
  • 6. Indexes on JSON attributes
    • Secondary index
    • Partial and expression indexes
    • Unique index
  • 7. Clean up (optional)

JSON data types are for storing JSON (JavaScript Object Notation) data, as specified in RFC 7159. Such data can also be stored as text, but the JSON data types have the advantage of enforcing that each stored value is valid according to the JSON rules. There are also assorted JSON-specific functions and operators available for data stored in these data types.

  • YSQL
  • YCQL

See the section JSON data types and functionality for the YSQL reference documentation on the topic.

Note

The JSON functionality in YSQL is nearly identical to the JSON functionality in PostgreSQL.

There are two JSON data types supported in YSQL: json and jsonb.

  • The jsonb type does not preserve white space, does not preserve the order of object keys, and does not keep duplicate object keys. If duplicate keys are specified in the input, only the last value is kept.

  • The json type stores an exact copy of the input text, and therefore preserves semantically-insignificant white space between tokens, as well as the order of keys within JSON objects. Also, if a JSON object within the value contains the same key more than once, all the key/value pairs are kept. The processing functions consider the last value as the operative one.

Tip

When to use jbonb vs json? In general, most applications should prefer to store JSON data as jsonb, unless there are quite specialized needs, such as legacy assumptions about ordering of object keys.

They accept almost identical sets of values as input. The major practical difference is one of efficiency:

  • The json data type stores an exact copy of the input text, which processing functions must reparse on each execution
  • The jsonb data is stored in a decomposed binary format that makes it slightly slower to input due to added conversion overhead, but significantly faster to process, since no reparsing is needed. jsonb also supports indexing, which can be a significant advantage.

This section will focus on only the jsonb type.

1. Prerequisites

You need a YugabyteDB cluster to run through the steps below. If do not have a YugabyteDB cluster, you can create one on your local machine as shown below.

$ ./bin/yugabyted start

Connect to the cluster using ysqlsh to run through the examples below.

$ ./bin/ysqlsh

Next, create a simple table books which has a primary key and one jsonb column doc which contains various details about that book.

create table books(k int primary key, doc jsonb not null);

Next, insert some rows which contain details about various books. These details are represented as JSON documents, as shown below.

insert into books(k, doc) values
  (1,
  '{ "ISBN"    : 4582546494267,
     "title"   : "Macbeth",
     "author"  : {"given_name": "William", "family_name": "Shakespeare"},
     "year"    : 1623}'),

  (2,
  '{ "ISBN"    : 8760835734528,
     "title"   : "Hamlet",
     "author"  : {"given_name": "William", "family_name": "Shakespeare"},
     "year"    : 1603,
     "editors" : ["Lysa", "Elizabeth"] }'),

  (3,
  '{ "ISBN"    : 7658956876542,
     "title"   : "Oliver Twist",
     "author"  : {"given_name": "Charles", "family_name": "Dickens"},
     "year"    : 1838,
     "genre"   : "novel",
     "editors" : ["Mark", "Tony", "Britney"] }'),
  (4,
  '{ "ISBN"    : 9874563896457,
     "title"   : "Great Expectations",
     "author"  : {"family_name": "Dickens"},
     "year"    : 1950,
     "genre"   : "novel",
     "editors" : ["Robert", "John", "Melisa", "Elizabeth"] }'),

  (5,
  '{ "ISBN"    : 8647295405123,
     "title"   : "A Brief History of Time",
     "author"  : {"given_name": "Stephen", "family_name": "Hawking"},
     "year"    : 1988,
     "genre"   : "science",
     "editors" : ["Melisa", "Mark", "John", "Fred", "Jane"] }'),

  (6,
  '{
    "ISBN"     : 6563973589123,
    "year"     : 1989,
    "genre"    : "novel",
    "title"    : "Joy Luck Club",
    "author"   : {"given_name": "Amy", "family_name": "Tan"},
    "editors"  : ["Ruilin", "Aiping"]}');

Note

Some of the rows in the example have some of the keys missing (intentional). But the row with "k=6" has every key.

2. Query JSON documents

List all the rows thus:

select * from books;

This is the result:

yugabyte=# select * from books;
 k |                                                                                                         doc
---+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 5 | {"ISBN": 8647295405123, "year": 1988, "genre": "science", "title": "A Brief History of Time", "author": {"given_name": "Stephen", "family_name": "Hawking"}, "editors": ["Melisa", "Mark", "John", "Fred", "Jane"]}
 1 | {"ISBN": 4582546494267, "year": 1623, "title": "Macbeth", "author": {"given_name": "William", "family_name": "Shakespeare"}}
 6 | {"ISBN": 6563973589123, "year": 1989, "genre": "novel", "title": "Joy Luck Club", "author": {"given_name": "Amy", "family_name": "Tan"}, "editors": ["Ruilin", "Aiping"]}
 4 | {"ISBN": 9874563896457, "year": 1950, "genre": "novel", "title": "Great Expectations", "author": {"family_name": "Dickens"}, "editors": ["Robert", "John", "Melisa", "Elizabeth"]}
 2 | {"ISBN": 8760835734528, "year": 1603, "title": "Hamlet", "author": {"given_name": "William", "family_name": "Shakespeare"}, "editors": ["Lysa", "Elizabeth"]}
 3 | {"ISBN": 7658956876542, "year": 1838, "genre": "novel", "title": "Oliver Twist", "author": {"given_name": "Charles", "family_name": "Dickens"}, "editors": ["Mark", "Tony", "Britney"]}
(6 rows)

Using -> and ->>

YSQL has two native operators, the -> opertator (see this section)) and the ->> operator (see this section), to query JSON documents. The first operator -> returns a JSON object, while the operator ->> returns text. These operators work on both JSON as well as JSONB columns to select a subset of attributes as well as to inspect the JSON document.

The example below shows how to select a few attributes from each document.

SELECT doc->'title' AS book_title,
       CONCAT(doc->'author'->'family_name',
              ', ', doc->'author'->'given_name') AS author
    FROM books;

This is the result:

yugabyte=# SELECT doc->'title' AS book_title,
yugabyte-#        CONCAT(doc->'author'->'family_name',
yugabyte(#               ', ', doc->'author'->'given_name') AS author
yugabyte-#     FROM books;
        book_title         |          author
---------------------------+--------------------------
 "A Brief History of Time" | "Hawking", "Stephen"
 "Macbeth"                 | "Shakespeare", "William"
 "Joy Luck Club"           | "Tan", "Amy"
 "Great Expectations"      | "Dickens",
 "Hamlet"                  | "Shakespeare", "William"
 "Oliver Twist"            | "Dickens", "Charles"
(6 rows)

Because the -> operator returns an object, you can chain it to inspect deep into a JSON document, as shown below.

select '{"title": "Macbeth", "author": {"given_name": "William"}}'::jsonb
  -> 'author' -> 'given_name' as first_name;

This is the result:

yugabyte=# select '{"title": "Macbeth", "author": {"given_name": "William"}}'::jsonb
             -> 'author' -> 'given_name' as first_name;
 first_name
------------
 "William"
(1 row)

Existence with ?

The ? operator (see this section) can be used to check if a JSON document contains a certain attribute. For example, if you want to find a count of the records where the doc column contains a property named genre, run the following statement.

SELECT doc->'title' AS book_title,
       doc->'genre' as genre
    FROM books WHERE doc ? 'genre';

This is the result:

yugabyte=# SELECT doc->'title' AS book_title,
yugabyte-#        doc->'genre' as genre
yugabyte-#     FROM books WHERE doc ? 'genre';
        book_title         |   genre
---------------------------+-----------
 "A Brief History of Time" | "science"
 "Joy Luck Club"           | "novel"
 "Great Expectations"      | "novel"
 "Oliver Twist"            | "novel"
(4 rows)

Containment with @>

The containment operator @> (see this section) tests whether one document contains another. If you want to find all books that contain the JSON value {"author": {"given_name": "William"}} (in other words, the author of the book has the given name William), do this:

SELECT doc->'title' AS book_title,
       CONCAT(doc->'author'->'family_name',
              ', ', doc->'author'->'given_name') AS author
    FROM books
    WHERE doc @> '{"author": {"given_name": "William"}}'::jsonb;

This is the result:

yugabyte=# SELECT doc->'title' AS book_title,
yugabyte-#        CONCAT(doc->'author'->'family_name',
yugabyte(#               ', ', doc->'author'->'given_name') AS author
yugabyte-#     FROM books
yugabyte-#     WHERE doc @> '{"author": {"given_name": "William"}}'::jsonb;
 book_title |          author
------------+--------------------------
 "Macbeth"  | "Shakespeare", "William"
 "Hamlet"   | "Shakespeare", "William"
(2 rows)

3. Update JSON documents

There are a number of ways to update a JSON document, as shown below.

Add an attribute

Use the || operator (see this section) to either update or insert the attribute into the existing JSON document. For example, if you want to add a stock attribute to all the books, do this:

UPDATE books SET doc = doc || '{"stock": "true"}';

This is the result:

yugabyte=# SELECT doc->'title' AS title, doc->'stock' as stock FROM books;
           title           | stock
---------------------------+--------
 "A Brief History of Time" | "true"
 "Macbeth"                 | "true"
 "Joy Luck Club"           | "true"
 "Great Expectations"      | "true"
 "Hamlet"                  | "true"
 "Oliver Twist"            | "true"
(6 rows)

Remove an attribute

Use the - opertaor (see this section) to remove an attribute:

UPDATE books SET doc = doc - 'stock';

This will remove the field from all the documents, as shown below.

yugabyte=# SELECT doc->'title' AS title, doc->'stock' as stock FROM books;
           title           | stock
---------------------------+-------
 "A Brief History of Time" |
 "Macbeth"                 |
 "Joy Luck Club"           |
 "Great Expectations"      |
 "Hamlet"                  |
 "Oliver Twist"            |
(6 rows)

Replace a document

To replace an entire document, run the following SQL statement.

UPDATE books
    SET doc = '{"ISBN": 4582546494267, "year": 1623, "title": "Macbeth", "author": {"given_name": "William", "family_name": "Shakespeare"}}'
    WHERE k=1;

4. Built-in functions

YSQL supports a large number of operators and built-in functions that operate on JSON documents. This section highlights a few of these built-in functions.

Note

All of the built-in functions supported by PostgreSQL are supported in YSQL.

Check the reference documentation for a complete list of JSON functions and operators.

Expand JSON - jsonb_each

The jsonb_each() function expands the top-level JSON document into a set of key-value pairs, as shown below.

SELECT jsonb_each(doc) FROM books WHERE k=1;

The output is shown below.

yugabyte=# SELECT jsonb_each(doc) FROM books WHERE k=1;
                                 jsonb_each
----------------------------------------------------------------------------
 (ISBN,4582546494267)
 (year,1623)
 (title,"""Macbeth""")
 (author,"{""given_name"": ""William"", ""family_name"": ""Shakespeare""}")
(4 rows)

Retrieve keys - jsonb_object_keys

The jsonb_object_keys() function retrieves the keys of the top-level JSON document thus:

SELECT jsonb_object_keys(doc) FROM books WHERE k=1;

This is the result:

yugabyte=# SELECT jsonb_object_keys(doc) FROM books WHERE k=1;
 jsonb_object_keys
-------------------
 ISBN
 year
 title
 author
(4 rows)

Format JSON - jsonb_pretty

When you select a jsonb (or json) value in ysqlsh, you see the terse text typecast of the value. The jsonb_pretty() function returns a more human-readable format:

SELECT jsonb_pretty(doc) FROM books WHERE k=1;

This is the result:

yugabyte=# SELECT jsonb_pretty(doc) FROM books WHERE k=1;
             jsonb_pretty
--------------------------------------
 {                                   +
     "ISBN": 4582546494267,          +
     "year": 1623,                   +
     "title": "Macbeth",             +
     "author": {                     +
         "given_name": "William",    +
         "family_name": "Shakespeare"+
     }                               +
 }
(1 row)

5. Constraints

See the Create indexes and check constraints on JSON columns section.

You can create constraint on jsonb data types. Here are a couple of examples.

Check JSON documents are objects

Here's how to insist that each JSON document is an object:

alter table books
add constraint books_doc_is_object
check (jsonb_typeof(doc) = 'object');

Check ISBN is a 13-digit number

Here's how to insist that the ISBN is always defined and is a positive 13-digit number:

alter table books
add constraint books_isbn_is_positive_13_digit_number
check (
  (doc->'ISBN') is not null
    and
  jsonb_typeof(doc->'ISBN') = 'number'
     and
  (doc->>'ISBN')::bigint > 0
    and
  length(((doc->>'ISBN')::bigint)::text) = 13
);

6. Indexes on JSON attributes

Indexes are essential to perform efficient lookups by document attributes. Without indexes, queries on document attributes end up performing a full table scan and process each JSON document. This section outlines some of the indexes supported.

Secondary index

If you want to support range queries that reference the value for the year attribute, do this:

CREATE INDEX books_year
    ON books (((doc->>'year')::int) ASC)
    WHERE doc->>'year' is not null;

This will make the following query efficient:

select
  (doc->>'ISBN')::bigint as isbn,
  doc->>'title'          as title,
  (doc->>'year')::int    as year
from books
where (doc->>'year')::int > 1850
and doc->>'year' IS NOT NULL
order by 3;

Partial and expression indexes

You might want to index only those documents that contain the attribute (as opposed to indexing the rows that have a NULL value for that attribute). This is a common scenario because not all the documents would have all the attributes defined. This can be achieved using a partial index.

In the previous section where you created a secondary index, not all the books may have the year attribute defined. Suppose that you want to index only those documents that have a NOT NULL year attribute create the following partial index:

CREATE INDEX books_year
    ON books ((doc->>'year') ASC)
    WHERE doc->>'year' IS NOT NULL;

Unique index

You can create a unique index on the "ISBN" key for the books table as shown below.

create unique index books_isbn_unq on books((doc->>'ISBN'));

Inserting a row with a duplicate value would fail as shown below. The book has a new primary key k but an existing ISBN, 4582546494267.

yugabyte=# insert into books values
           (7, '{  "ISBN"    : 4582546494267,
                   "title"   : "Fake Book with duplicate ISBN" }');
ERROR:  23505: duplicate key value violates unique constraint "books_isbn_unq"

7. Clean up (optional)

Optionally, you can shut down the local cluster you created earlier.

$ ./bin/yugabyted destroy
  • 1. Prerequisites
  • 2. Query JSON documents
    • Using -> and ->>
    • Existence with ?
    • Containment with @>
  • 3. Update JSON documents
    • Add an attribute
    • Remove an attribute
    • Replace a document
  • 4. Built-in functions
    • Expand JSON - jsonb_each
    • Retrieve keys - jsonb_object_keys
    • Format JSON - jsonb_pretty
  • 5. Constraints
    • Check JSON documents are objects
    • Check ISBN is a 13-digit number
  • 6. Indexes on JSON attributes
    • Secondary index
    • Partial and expression indexes
    • Unique index
  • 7. Clean up (optional)
Ask our community
  • Slack
  • Github
  • Forum
  • StackOverflow
Yugabyte
Contact Us
Copyright © 2017-2022 Yugabyte, Inc. All rights reserved.