Join us on YugabyteDB Community Slack
Star us on
Get Started
Slack
GitHub
Get Started
v2.13 (latest) v2.12 (stable) v2.8 (earlier version) v2.6 (earlier version) v2.4 (earlier version) v2.2 (earlier version) v2.1 (earlier version) v2.0 (earlier version) v1.3 (earlier version)
  • YUGABYTEDB CORE
    • Quick start
      • 1. Install YugabyteDB
      • 2. Create a local cluster
      • 3. Explore distributed SQL
      • 4. Build an application
        • Java
        • Node.js
        • Go
        • Python
        • Ruby
        • C#
        • PHP
        • C++
        • C
        • Scala
    • Explore
      • SQL features
        • Schemas and Tables
        • Data Types
        • Data Manipulation
        • Queries and Joins
        • Expressions and Operators
        • Stored Procedures
        • Triggers
        • Advanced features
          • Cursors
          • Table Partitioning
          • Views
          • Savepoints
          • Collations
          • Extensions
        • Going beyond SQL
          • Follower reads
          • Tablespaces
      • Fault tolerance
      • Horizontal scalability
        • Scaling Transactions
        • Sharding Data
      • Transactions
        • Distributed Transactions
        • Isolation Levels
        • Explicit Locking
      • Indexes and Constraints
        • Overview
        • Unique Indexes
        • Partial Indexes
        • Expression Indexes
        • Generalized Inverted Indexes
        • Primary Key
        • Foreign Key
        • Other Constraints
      • JSON support
      • Multi-region deployments
        • Sync replication (3+ regions)
        • Async Replication (2+ regions)
        • Row-Level Geo-Partitioning
        • Read replicas
      • Query tuning
        • Introduction
        • Get query statistics using pg_stat_statements
        • Viewing live queries with pg_stat_activity
        • Analyzing queries with EXPLAIN
        • Optimizing YSQL queries using pg_hint_plan
      • Cluster management
        • Point-in-time recovery
      • Security
      • Observability
        • Prometheus Integration
        • Grafana Dashboard
    • Develop
      • Learn app development
        • 1. SQL vs NoSQL
        • 2. Data modeling
        • 3. Data types
        • 4. ACID transactions
        • 5. Aggregations
        • 6. Batch operations
        • 7. Date and time
        • 8. Strings and text
        • 9. TTL for data expiration
      • Real-world examples
        • E-Commerce app
        • IoT fleet management
      • Explore sample apps
      • Best practices
      • Cloud-native development
        • Codespaces
        • Gitpod
    • Migrate
      • Migration process overview
      • Migrate from PostgreSQL
        • Convert a PostgreSQL schema
        • Migrate a PostgreSQL application
        • Export PostgreSQL data
        • Prepare a cluster
        • Import PostgreSQL data
        • Verify Migration
    • Deploy
      • Deployment checklist
      • Manual deployment
        • 1. System configuration
        • 2. Install software
        • 3. Start YB-Masters
        • 4. Start YB-TServers
        • 5. Verify deployment
      • Kubernetes
        • Single-zone
          • Open Source
          • Amazon EKS
          • Google Kubernetes Engine
          • Azure Kubernetes Service
        • Multi-zone
          • Amazon EKS
          • Google Kubernetes Engine
        • Multi-cluster
          • Google Kubernetes Engine
        • Best practices
        • Connect Clients
      • Docker
      • Public clouds
        • Amazon Web Services
        • Google Cloud Platform
        • Microsoft Azure
      • Multi-DC deployments
        • Three+ data center (3DC)
        • Asynchronous Replication
        • Read replica clusters
    • Benchmark
      • TPC-C
      • sysbench
      • YCSB
      • Key-value workload
      • Large datasets
      • Scalability
        • Scaling queries
      • Resilience
        • Jepsen testing
      • Performance Troubleshooting
    • Secure
      • Security checklist
      • Enable Authentication
        • Enable User Authentication
        • Configure ysql_hba_conf_csv
      • Authentication Methods
        • Password Authentication
        • LDAP Authentication
        • Host-Based Authentication
        • Trust Authentication
      • Role-Based Access Control
        • Overview
        • Manage Users and Roles
        • Grant Privileges
        • Row-Level Security (RLS)
        • Column-Level Security
      • Encryption in Transit
        • Create server certificates
        • Enable server-to-server encryption
        • Enable client-to-server encryption
        • Connect to Clusters
        • TLS and authentication
      • Encryption at rest
      • Column-level encryption
      • Audit Logging
        • Configure Audit Logging
        • Session-Level Audit Logging
        • Object-Level Audit Logging
      • Vulnerability disclosure policy
    • Manage
      • Back up and restore
        • Back up data
        • Restore data
        • Point-in-time recovery
        • Snapshot and restore data
      • Migrate data
        • Bulk import
        • Bulk export
      • Change cluster configuration
      • Diagnostics reporting
      • Upgrade a deployment
      • Grow cluster
    • Troubleshoot
      • Troubleshooting
      • Cluster level issues
        • YCQL connection issues
        • YEDIS connection Issues
        • Recover tserver/master
        • Replace a failed YB-TServer
        • Replace a failed YB-Master
        • Manual remote bootstrap when a majority of peers fail
      • Node level issues
        • Check servers
        • Inspect logs
        • System statistics
        • Disk failure
        • Common error messages
    • Contribute
      • Core database
        • Contribution checklist
        • Build the source
        • Configure a CLion project
        • Run the tests
        • Coding style
  • YUGABYTE PLATFORM
    • Overview
      • Install
      • Configure
    • Install Yugabyte Platform
      • Prerequisites
      • Prepare the environment
      • Install software
      • Prepare nodes (on-prem)
      • Uninstall software
    • Configure Yugabyte Platform
      • Create admin user
      • Configure the cloud provider
      • Configure the backup target
      • Configure alerts
    • Create deployments
      • Multi-zone universe
      • Multi-region universe
      • Multi-cloud universe
      • Read replica cluster
      • Asynchronous replication
    • Manage deployments
      • Start and stop processes
      • Add a node
      • Eliminate an unresponsive node
      • Enable high availability
      • Edit configuration flags
      • Edit a universe
      • Delete a universe
      • Configure instance tags
      • Upgrade YugabyteDB software
      • Migrate to Helm 3
    • Back up universes
      • Configure backup storage
      • Back up universe data
      • Restore universe data
      • Schedule data backups
    • Security
      • Security checklist
      • Customize ports
      • LDAP authentication
      • Authorization platform
      • Create a KMS configuration
      • Enable encryption at rest
      • Enable encryption in transit (TLS)
      • Network security
    • Alerts and monitoring
      • Alerts
      • Live Queries dashboard
      • Slow Queries dashboard
    • Troubleshoot
      • Install and upgrade issues
      • Universe issues
    • Administer Yugabyte Platform
      • Back Up Yugabyte Platform
      • Authenticate with LDAP
    • Upgrade Yugabyte Platform
      • Upgrade using Replicated
  • YUGABYTE CLOUD
    • Overview
    • Quick start
      • Create a free cluster
      • Connect to the cluster
      • Create a database
      • Explore distributed SQL
      • Build an application
        • Before you begin
        • Java
        • Go
        • Python
        • Node.js
        • C
        • C++
        • C#
        • Ruby
        • Rust
        • PHP
    • Deploy clusters
      • Planning a cluster
      • Create a free cluster
      • Create a standard cluster
      • VPC network
        • Overview
        • Set up a VPC network
        • VPCs
        • Peering Connections
    • Secure clusters
      • IP allow lists
      • Database authorization
      • Add database users
      • Encryption in transit
      • Audit cloud activity
    • Connect to clusters
      • Cloud Shell
      • Client shell
      • Connect applications
    • Alerts and monitoring
      • Alerts
      • Performance metrics
      • Live queries
      • Slow YSQL queries
      • Cluster activity
    • Manage clusters
      • Backup and restore
      • Scale and configure clusters
      • Create extensions
    • Administer Yugabyte Cloud
      • Manage cloud users
      • Manage billing
      • Cluster costs
    • Example applications
      • Connect a Spring application
      • Connect a YCQL Java application
      • Hasura Cloud
      • Deploy a GraphQL application
    • Security architecture
      • Security architecture
      • Shared responsibility model
    • Troubleshoot
    • Yugabyte Cloud FAQ
    • What's new
  • INTEGRATIONS
    • Apache Kafka
    • Apache Spark
    • JanusGraph
    • KairosDB
    • Presto
    • Metabase
    • WSO2 Identity Server
    • YSQL Loader
    • Yugabyte JDBC Driver
    • Prisma
    • Hasura
      • Application Development
      • Benchmarking
    • Spring Framework
      • Spring Data YugabyteDB
      • Spring Data Cassandra
    • Flyway
    • GORM
    • Liquibase
    • Sequelize
    • SQLAlchemy
    • Entity Framework
    • Django REST framework
  • REFERENCE
    • Architecture
      • Design goals
      • Key concepts
        • Universe
        • YB-TServer Service
        • YB-Master Service
      • Core functions
        • Universe creation
        • Table creation
        • Write IO path
        • Read IO path
        • High availability
      • Layered architecture
      • Query layer
        • Overview
      • DocDB transactions layer
        • Transactions overview
        • Transaction isolation levels
        • Explicit locking
        • Read Committed
        • Single-row transactions
        • Distributed transactions
        • Transactional IO path
      • DocDB sharding layer
        • Hash & range sharding
        • Tablet splitting
        • Colocated tables
      • DocDB replication layer
        • Replication
        • xCluster replication
        • Read replicas
        • Change data capture (CDC)
      • DocDB storage layer
        • Persistence
        • Performance
    • APIs
      • YSQL
        • The SQL language
          • SQL statements
            • ABORT
            • ALTER DATABASE
            • ALTER DEFAULT PRIVILEGES
            • ALTER DOMAIN
            • ALTER GROUP
            • ALTER POLICY
            • ALTER ROLE
            • ALTER SEQUENCE
            • ALTER TABLE
            • ALTER USER
            • ANALYZE
            • BEGIN
            • CALL
            • COMMENT
            • COMMIT
            • COPY
            • CREATE AGGREGATE
            • CREATE CAST
            • CREATE DATABASE
            • CREATE DOMAIN
            • CREATE EXTENSION
            • CREATE FUNCTION
            • CREATE GROUP
            • CREATE INDEX
            • CREATE MATERIALIZED VIEW
            • CREATE OPERATOR
            • CREATE OPERATOR CLASS
            • CREATE POLICY
            • CREATE PROCEDURE
            • CREATE ROLE
            • CREATE RULE
            • CREATE SCHEMA
            • CREATE SEQUENCE
            • CREATE TABLE
            • CREATE TABLE AS
            • CREATE TRIGGER
            • CREATE TYPE
            • CREATE USER
            • CREATE VIEW
            • DEALLOCATE
            • DELETE
            • DO
            • DROP AGGREGATE
            • DROP CAST
            • DROP DATABASE
            • DROP DOMAIN
            • DROP EXTENSION
            • DROP FUNCTION
            • DROP GROUP
            • DROP MATERIALIZED VIEW
            • DROP OPERATOR
            • DROP OPERATOR CLASS
            • DROP OWNED
            • DROP POLICY
            • DROP PROCEDURE
            • DROP ROLE
            • DROP RULE
            • DROP SEQUENCE
            • DROP TABLE
            • DROP TRIGGER
            • DROP TYPE
            • DROP USER
            • END
            • EXECUTE
            • EXPLAIN
            • GRANT
            • INSERT
            • LOCK
            • PREPARE
            • REASSIGN OWNED
            • REFRESH MATERIALIZED VIEW
            • RELEASE SAVEPOINT
            • RESET
            • REVOKE
            • ROLLBACK
            • ROLLBACK TO SAVEPOINT
            • SAVEPOINT
            • SELECT
            • SET
            • SET CONSTRAINTS
            • SET ROLE
            • SET SESSION AUTHORIZATION
            • SET TRANSACTION
            • SHOW
            • SHOW TRANSACTION
            • TRUNCATE
            • UPDATE
            • VALUES
          • WITH clause
            • WITH clause—SQL syntax and semantics
            • recursive CTE
            • case study—traversing an employee hierarchy
            • traversing general graphs
              • graph representation
              • common code
              • undirected cyclic graph
              • directed cyclic graph
              • directed acyclic graph
              • rooted tree
              • Unique containing paths
              • Stress testing find_paths()
            • case study—Bacon Numbers from IMDb
              • Bacon numbers for synthetic data
              • Bacon numbers for IMDb data
        • Data types
          • Array
            • array[] constructor
            • Literals
              • Text typecasting and literals
              • Array of primitive values
              • Row
              • Array of rows
            • FOREACH loop (PL/pgSQL)
            • array of DOMAINs
            • Functions and operators
              • ANY and ALL
              • Array comparison
              • Array slice operator
              • Array concatenation
              • Array properties
              • array_agg(), unnest(), generate_subscripts()
              • array_fill()
              • array_position(), array_positions()
              • array_remove()
              • array_replace() / set value
              • array_to_string()
              • string_to_array()
          • Binary
          • Boolean
          • Character
          • Date and time
            • Conceptual background
            • Timezones and UTC offsets
              • Catalog views
              • Extended_timezone_names
                • Unrestricted full projection
                • Real timezones with DST
                • Real timezones no DST
                • Synthetic timezones no DST
              • Offset/timezone-sensitive operations
                • Timestamptz to/from timestamp conversion
                • Pure 'day' interval arithmetic
              • Four ways to specify offset
                • Name-resolution rules
                  • 1 case-insensitive resolution
                  • 2 ~names.abbrev never searched
                  • 3 'set timezone' string not resolved in ~abbrevs.abbrev
                  • 4 ~abbrevs.abbrev before ~names.name
                  • Helper functions
              • Syntax contexts for offset
              • Recommended practice
            • Typecasting between date-time and text-values
            • Semantics of the date-time data types
              • Date data type
              • Time data type
              • Plain timestamp and timestamptz
              • Interval data type
                • Interval representation
                  • Ad hoc examples
                  • Representation model
                • Interval value limits
                • Declaring intervals
                • Justify() and extract(epoch...)
                • Interval arithmetic
                  • Interval-interval comparison
                  • Interval-interval addition and subtraction
                  • Interval-number multiplication
                  • Moment-moment overloads of "-"
                  • Moment-interval overloads of "+" and "-"
                • Custom interval domains
                • Interval utility functions
            • Typecasting between date-time datatypes
            • Operators
              • Test comparison overloads
              • Test addition overloads
              • Test subtraction overloads
              • Test multiplication overloads
              • Test division overloads
            • General-purpose functions
              • Creating date-time values
              • Manipulating date-time values
              • Current date-time moment
              • Delaying execution
              • Miscellaneous
                • Function age()
                • Function extract() | date_part()
                • Implementations that model the overlaps operator
            • Formatting functions
            • Case study—SQL stopwatch
            • Download & install the date-time utilities
            • ToC
          • JSON
            • JSON literals
            • Primitive and compound data types
            • Code example conventions
            • Indexes and check constraints
            • Functions & operators
              • ::jsonb, ::json, ::text (typecast)
              • ->, ->>, #>, #>> (JSON subvalues)
              • - and #- (remove)
              • || (concatenation)
              • = (equality)
              • @> and <@ (containment)
              • ? and ?| and ?& (key or value existence)
              • array_to_json()
              • jsonb_agg()
              • jsonb_array_elements()
              • jsonb_array_elements_text()
              • jsonb_array_length()
              • jsonb_build_object()
              • jsonb_build_array()
              • jsonb_each()
              • jsonb_each_text()
              • jsonb_extract_path()
              • jsonb_extract_path_text() and json_extract_path_text()
              • jsonb_object()
              • jsonb_object_agg()
              • jsonb_object_keys()
              • jsonb_populate_record()
              • jsonb_populate_recordset()
              • jsonb_pretty()
              • jsonb_set() and jsonb_insert()
              • jsonb_strip_nulls()
              • jsonb_to_record()
              • jsonb_to_recordset()
              • jsonb_typeof()
              • row_to_json()
              • to_jsonb()
          • Money
          • Numeric
          • Range
          • Serial
          • UUID
        • Functions and operators
          • Aggregate functions
            • Informal functionality overview
            • Invocation syntax and semantics
            • grouping sets, rollup, cube
            • Per function signature and purpose
              • avg(), count(), max(), min(), sum()
              • array_agg(), string_agg(), jsonb_agg(), jsonb_object_agg()
              • bit_and(), bit_or(), bool_and(), bool_or()
              • variance(), var_pop(), var_samp(), stddev(), stddev_pop(), stddev_samp()
              • linear regression
                • covar_pop(), covar_samp(), corr()
                • regr_%()
              • mode(), percentile_disc(), percentile_cont()
              • rank(), dense_rank(), percent_rank(), cume_dist()
            • case study—percentile_cont() and the "68–95–99.7" rule
            • case study—linear regression on COVID data
              • Download the COVIDcast data
              • Ingest the COVIDcast data
                • Inspect the COVIDcast data
                • Copy the .csv files to staging tables
                • Check staged data conforms to the rules
                • Join the staged data into a single table
                • SQL scripts
                  • Create cr_staging_tables()
                  • Create cr_copy_from_scripts()
                  • Create assert_assumptions_ok()
                  • Create xform_to_covidcast_fb_survey_results()
                  • ingest-the-data.sql
              • Analyze the COVIDcast data
                • symptoms vs mask-wearing by day
                • Data for scatter-plot for 21-Oct-2020
                • Scatter-plot for 21-Oct-2020
                • SQL scripts
                  • analysis-queries.sql
                  • synthetic-data.sql
          • currval()
          • lastval()
          • nextval()
          • Window functions
            • Informal functionality overview
            • Invocation syntax and semantics
            • Per function signature and purpose
              • row_number(), rank() and dense_rank()
              • percent_rank(), cume_dist() and ntile()
              • first_value(), nth_value(), last_value()
              • lag(), lead()
              • Tables for the code examples
                • table t1
                • table t2
                • table t3
                • table t4
            • case study—analyzing a normal distribution
              • Bucket allocation scheme
              • do_clean_start.sql
              • cr_show_t4.sql
              • cr_dp_views.sql
              • cr_int_views.sql
              • cr_pr_cd_equality_report.sql
              • cr_bucket_using_width_bucket.sql
              • cr_bucket_dedicated_code.sql
              • do_assert_bucket_ok
              • cr_histogram.sql
              • cr_do_ntile.sql
              • cr_do_percent_rank.sql
              • cr_do_cume_dist.sql
              • do_populate_results.sql
              • do_report_results.sql
              • do_compare_dp_results.sql
              • do_demo.sql
              • Reports
                • Histogram report
                • dp-results
                • compare-dp-results
                • int-results
          • yb_hash_code()
        • Extensions
        • Keywords
        • Reserved names
      • YCQL
        • ALTER KEYSPACE
        • ALTER ROLE
        • ALTER TABLE
        • CREATE INDEX
        • CREATE KEYSPACE
        • CREATE ROLE
        • CREATE TABLE
        • CREATE TYPE
        • DROP INDEX
        • DROP KEYSPACE
        • DROP ROLE
        • DROP TABLE
        • DROP TYPE
        • GRANT PERMISSION
        • GRANT ROLE
        • REVOKE PERMISSION
        • REVOKE ROLE
        • USE
        • INSERT
        • SELECT
        • EXPLAIN
        • UPDATE
        • DELETE
        • TRANSACTION
        • TRUNCATE
        • Simple expressions
        • Subscripted expressions
        • Function call
        • Operators
        • BLOB
        • BOOLEAN
        • Collection
        • FROZEN
        • INET
        • Integer and counter
        • Non-integer
        • TEXT
        • DATE, TIME, and TIMESTAMP
        • UUID and TIMEUUID
        • JSONB
        • Date and time
        • BATCH
    • CLIs
      • yb-ctl
      • yb-docker-ctl
      • ysqlsh
      • ycqlsh
      • yb-admin
      • yb-ts-cli
      • ysql_dump
      • ysql_dumpall
    • Configuration
      • yb-tserver
      • yb-master
      • yugabyted
      • Default ports
    • Drivers
      • Client drivers for YSQL
      • Client drivers for YCQL
    • Connectors
      • Kafka Connect YugabyteDB
    • Third party tools
      • Arctype
      • DBeaver
      • DbSchema
      • pgAdmin
      • SQL Workbench/J
      • TablePlus
      • Visual Studio Code
    • Sample datasets
      • Chinook
      • Northwind
      • PgExercises
      • SportsDB
      • Retail Analytics
  • RELEASES
    • Releases overview
      • v2.13 series (latest)
      • v2.12 series (stable)
      • v2.11 series
      • v2.9 series
      • v2.8 series
      • v2.7 series
      • v2.6 series
      • v2.5 series
      • v2.4 series
      • v2.3 series
      • v2.2 series
      • v2.1 series
      • v2.0 series
      • v1.3 series
      • v1.2 series
    • Release versioning
  • FAQ
    • Comparisons
      • Amazon Aurora
      • Google Cloud Spanner
      • CockroachDB
      • TiDB
      • Vitess
      • MongoDB
      • FoundationDB
      • Amazon DynamoDB
      • Azure Cosmos DB
      • Apache Cassandra
      • PostgreSQL
      • Redis in-memory store
      • Apache HBase
    • General FAQ
    • Operations FAQ
    • API compatibility FAQ
    • Yugabyte Platform FAQ
  • MISC
    • YEDIS
      • Quick start
      • Develop
        • Build an application
        • C#
        • C++
        • Go
        • Java
        • NodeJS
        • Python
      • API reference
        • APPEND
        • AUTH
        • CONFIG
        • CREATEDB
        • DELETEDB
        • LISTDB
        • SELECT
        • DEL
        • ECHO
        • EXISTS
        • EXPIRE
        • EXPIREAT
        • FLUSHALL
        • FLUSHDB
        • GET
        • GETRANGE
        • GETSET
        • HDEL
        • HEXISTS
        • HGET
        • HGETALL
        • HINCRBY
        • HKEYS
        • HLEN
        • HMGET
        • HMSET
        • HSET
        • HSTRLEN
        • HVALS
        • INCR
        • INCRBY
        • KEYS
        • MONITOR
        • PEXPIRE
        • PEXPIREAT
        • PTTL
        • ROLE
        • SADD
        • SCARD
        • RENAME
        • SET
        • SETEX
        • PSETEX
        • SETRANGE
        • SISMEMBER
        • SMEMBERS
        • SREM
        • STRLEN
        • ZRANGE
        • TSADD
        • TSCARD
        • TSGET
        • TSLASTN
        • TSRANGEBYTIME
        • TSREM
        • TSREVRANGEBYTIME
        • TTL
        • ZADD
        • ZCARD
        • ZRANGEBYSCORE
        • ZREM
        • ZREVRANGE
        • ZSCORE
        • PUBSUB
        • PUBLISH
        • SUBSCRIBE
        • UNSUBSCRIBE
        • PSUBSCRIBE
        • PUNSUBSCRIBE
    • Legal
      • Third party software
> APIs > YSQL > The SQL language > WITH clause >

The recursive CTE

Report a doc issue Suggest new content
  • Syntax
  • Restrictions
    • Maximum one recursive CTE
    • The recursive CTE must be first in the clause
    • The recursive term must be parenthesised to allow this to use a WITH clause
    • Aggregate functions are not allowed in a recursive term
  • Semantics
    • Pseudocode definition of the semantics
    • PL/pgSQL procedure implementation of the pseudocode : example 1
    • PL/pgSQL procedure implementation of the pseudocode : example 2
  • Case studies

The optional RECURSIVE keyword fundamentally changes the meaning of a CTE. The recursive variant lets you implement SQL solutions that, without it, at best require verbose formulations involving, for example, self-joins. In the limit, the recursive CTE lets you implement SQL solutions that otherwise would require procedural programming.

Syntax

When the optional RECURSIVE keyword is used, the common_table_expression must be a SELECT statement—and this must have a specific form as the UNION or UNION ALL of the so-called non-recursive term and the recursive term, thus:

with
  recursive r(c1, c2, ...) as (

    -- Non-recursive term.
    (
      select ...
    )

    union [all]

    -- Recursive term. Notice the so-called recursive self-reference to r.
    (
      select ... from r ...
    )
  )
select ... from r ...;

The following minimal example is found in very many articles and in the documentation for several SQL databases.

with
  recursive r(n) as (

-- Non-recursive term.
    (
      values(1)
    )

    union all

    -- Recursive term.
    (
      select n + 1
      from r
      where n < 5
    )
  )
select n from r order by n;

Notice that the parentheses that surround the non-recursive term and the recursive term are not required. They are used for clarity. See the section The recursive term must be parenthesised to allow this to use a WITH clause for a scenario where the parentheses are essential.

This is the result:

 n 
---
 1
 2
 3
 4
 5

The Semantics section explains how a recursive CTE is evaluated. When you understand this, you can predict the result of this minimal example and, by induction, the result of any arbitrarily complex example.

Restrictions

The WITH clause syntax (see the section WITH clause—SQL syntax and semantics implies a pair of restrictions.

  • Grammar
  • Diagram
with_clause ::= [ WITH [ RECURSIVE ] 
                  { common_table_expression [ , ... ] } ]

with_clause

WITHRECURSIVE,common_table_expression

It shows that you can use the RECURSIVE keyword only immediately after the keyword WITH and that, therefore only the first CTE in a WITH clause can be a recursive CTE. These restrictions are illustrated in the immediately following sections Maximum one recursive CTE and The recursive CTE must be first in the clause.

Maximum one recursive CTE

The attempt to define more than one recursive CTE within a particular WITH clause causes a generic 42601 syntax error. You can work around this restriction by pushing it down by one level of nesting, thus:

with
  a1(n) as (
    select 42),

  a2(n) as (
    with
      recursive r(n) as (
        values(1)

        union all

        select n + 1
        from r
        where n < 5
        )
    select n from r),

  a3(n) as (
    select 99)

(
  select n from a1
  union all
  select n from a2
  union all
  select n from a3
)
order by n desc;

This is the result:

 n  
----
 99
 42
  5
  4
  3
  2
  1

The recursive CTE must be first in the clause

This code:

with
  a1(n) as (
    select 42),

  recursive r(n) as (
    values(1)

    union all

    select n + 1
    from r
    where n < 5
    ),

  a2(n) as (
    select 99)

(
  select n from r
  union all
  select n from a2
)
order by n desc;

causes a 42601 syntax error to be reported for the line recursive r(n) as... If you remove this:

a1(n) as (
    select 42),

then the statement executes without error to produce this result:

 n  
----
 99
  5
  4
  3
  2
  1

Alternatively, you can push down the recursive CTE one level as shown above.

The recursive term must be parenthesised to allow this to use a WITH clause

First try this positive example:

with
  recursive r(n) as (
    (
      with a1(n) as (
        values(1))
      select n from a1
    )

    union all

    (
      with a2(n) as (
        select n + 1
        from r
        where n < 5)
      select n from a2
    )
  )
select n from r order by n;

Notice that this is simply a syntax example. Using WITH clauses within the recursive and non-recursive terms brings no value. The statement executes without error and produces this result:

 n 
---
 1
 2
 3
 4
 5

Next, first, remove the parenthesis pair that surrounds the non-recursive term. The statement runs without error to produce the same result. Now, re-instate this pair and remove the parenthesis pair that surrounds the recursive term. You get the generic 42601 syntax error, reported for this line:

with a2(n) as (

Aggregate functions are not allowed in a recursive term

Try this:

with
  recursive r(n) as (
    (
      values(1)
    )

    union all

    (
      select max(n) + 1
      from r
      where n < 5
    )
  )
select n from r order by n;

It causes this specific error:

42P19: aggregate functions are not allowed in a recursive query's recursive term

The restriction, more carefully stated, disallows aggregate functions when the FROM list item is the recursive self-reference. By extension, the keywords GROUP BY and HAVING are also disallowed when the FROM list item is the recursive self-reference.

Here is an example that executes without error that uses an aggregate function on a FROM list item that is not the recursive self-reference:

set client_min_messages = warning;
drop table if exists t cascade;
create table t(n int primary key);
insert into t(n) values (1), (2), (3);

with
  recursive r(n) as (
    (
      values(1)
    )

    union all

    (
      select n + (select min(n) from t)
      from r
      where n < 5
    )
  )
select n from r order by n;

This is the results:

 n 
---
 1
 2
 3
 4
 5

Semantics

You can find various formulations of the following explanation by Internet search. In particular, here is a version from the PostgreSQL Version 11 documentation.

In informal prose:

  • The non-recursive term is invoked just once and establishes a starting relation.
  • The recursive term is invoked time and again. On its first invocation, it acts on the relation produced by the evaluation of the non-recursive term. On subsequent invocations, it acts on the relation produced by its previous invocation.
  • Each successive term evaluation appends its output to the growing result of the recursive CTE.
  • The repeating invocation of the recursive term stops when it produces an empty relation.

Pseudocode definition of the semantics

A compact, and exact, formulation is given by using pseudocode. The final_results table, the previous_results table, and the "TEMP_RESULTS" table are transient, statement-duration, structures.

  • Purge the final_results table and the previous_results table.

  • Evaluate the non-recursive term, inserting the resulting rows into the previous_results table.

  • Insert the contents of the previous_results table into the final_results table.

  • while the previous_results table is not empty loop

    • Purge the temp_results table.

    • Evaluate the recursive term using the current contents of the previous_results table for the recursive self-reference, inserting the resulting rows into the temp_results table.

    • Purge the previous_results table and insert the contents of the temp_results table.

    • Append the contents of the temp_results table into the final_results table.

  • end loop

  • Deliver the present contents of the final_results table so that whatever follows the recursive CTE can use them.

PL/pgSQL procedure implementation of the pseudocode : example 1

This pseudocode can be easily implemented, as a PL/pgSQL procedure, for the minimal example shown in the Syntax section above. First, do this set-up:

set client_min_messages = warning;

drop procedure if exists recursive_with_semantics_1 cascade;
drop table if exists final_results cascade;
drop table if exists previous_results cascade;
drop table if exists temp_results cascade;

create table final_results(n int primary key);
create table previous_results(n int primary key);
create table temp_results(n int primary key);

Now create the procedure:

create procedure recursive_with_semantics_1(max_n in int)
  language plpgsql
as $body$
begin
  -- Emulate the non-recursive term.
  delete from final_results;
  delete from previous_results;
  insert into previous_results(n) values(1);
  insert into final_results(n) select n from previous_results;

  -- Emulate the recursive term.
  while ((select count(*) from previous_results) > 0) loop
    delete from temp_results;
    insert into temp_results
    select n + 1 from previous_results
    where n < max_n;

    delete from previous_results;
    insert into previous_results(n) select n from temp_results;
    insert into final_results(n) select n from temp_results;
  end loop;
end;
$body$;

Notice that the PostgreSQL Version 11 documentation says this:

Strictly speaking, this process is iteration not recursion, but RECURSIVE is the terminology chosen by the SQL standards committee.

This is a somewhat dubious claim because, in any language, recursion is implemented at a lower level in the hierarchy of abstractions, as iteration. The code of the PL/pgSQL procedure, because it uses a WHILE loop, makes this point explicitly.

Now invoke the procedure and observe the contents of the final_results table:

call recursive_with_semantics_1(5);
select n from final_results order by 1;

The result is identical to that produced by the SQL implementation that it emulates (shown in the Syntax section above).

PL/pgSQL procedure implementation of the pseudocode : example 2

Try this extended version of the minimal example:

with
  recursive r(c1, c2) as (

    -- Non-recursive term.
    (
      values (0, 1), (0, 2), (0, 3)
    )

    union all

    -- Recursive term.
    (
      select c1 + 1, c2 + 1
      from r
      where c1 < 4
    )
  )
select c1, c2 from r order by c1, c2;

This is the result:

 c1 | c2 
----+----
  0 |  1
  0 |  2
  0 |  3
  
  1 |  2
  1 |  3
  1 |  4
  
  2 |  3
  2 |  4
  2 |  5
  
  3 |  4
  3 |  5
  3 |  6
  
  4 |  5
  4 |  6
  4 |  7

The whitespace was added by hand to group the results into those produced first by evaluating the non-recursive term and then those produced by each successive repeat evaluation of the recursive term.

The procedural implementation that emulates the pseudocode is a natural extension of the first example. First, do this set-up:

set client_min_messages = warning;

drop procedure if exists recursive_with_semantics_2 cascade;
drop table if exists final_results cascade;
drop table if exists previous_results cascade;
drop table if exists temp_results cascade;

create table final_results(
  c1 int not null,
  c2 int not null,
  constraint recursive_cte_results_pk primary key(c1, c2));

create table previous_results(
  c1 int not null,
  c2 int not null,
  constraint previous_results_pk primary key(c1, c2));

create table temp_results(
  c1 int not null,
  c2 int not null,
  constraint temp_results_pk primary key(c1, c2));

Now create the procedure:

create procedure recursive_with_semantics_2(max_c1 in int)
  language plpgsql
as $body$
begin
  -- Emulate the non-recursive term.
  delete from final_results;
  delete from previous_results;
  insert into previous_results(c1, c2) values (0, 1), (0, 2), (0, 3);
  insert into final_results(c1, c2) select c1, c2 from previous_results;

  -- Emulate the recursive term.
  while ((select count(*) from previous_results) > 0) loop
    delete from temp_results;
    insert into temp_results
    select c1 + 1, c2 + 1 from previous_results
    where c1 < max_c1;

    delete from previous_results;
    insert into previous_results(c1, c2) select c1, c2 from temp_results;
    insert into final_results(c1, c2) select c1, c2 from temp_results;
  end loop;
end;
$body$;

Notice that, here, each iteration accumulates three rows.

Now invoke the procedure and observe the contents of the final_results table:

call recursive_with_semantics_2(4);
select c1, c2 from final_results order by c1, c2;

The result is identical to that produced by the SQL implementation that it emulates.

The section Using a recursive CTE to traverse graphs of all kinds shows how to do graph traversal of undirected and directed graphs using application-agnostic examples. When the graph is cyclic, it shows how to detect and prevent endless repetition.

Case studies

The remaining sections (in the overall main WITH clause parent section) describe how to use a recursive CTE to implement path finding for the special case of a hierarchy, for the general case of an undirected cyclic graph (and other more restricted kinds of graph), and for a specific application of the approach for the general graph.

  • Case study—Using a recursive CTE to traverse an employee hierarchy describes the use case (traversing an employee hierarchy) that is most commonly used to illustrate a practical application of the recursive CTE. Different SQL databases with different variants of SQL use importantly different approaches. PostgreSQL, and therefore YSQL, have only standard SQL features here (and not, therefore, the CONNECT BY PRIOR feature that is typically used with Oracle Database). Neither do they have dedicated syntax to ask for breadth-first or depth-first traversal. Rather, these two kinds of traversal must be programmed explicitly. The explicit solutions use array functionality and are straightforward. Moreover, using this approach allows various second-order display choices easily to be implemented.

  • Using a recursive CTE to traverse graphs of all kinds leading to Using a recursive CTE to compute Bacon Numbers for actors listed in the IMDb. The approach to traversing graphs of all kinds is a natural extension of the approach shown for the employee hierarchy traversal. It adds logic to accommodate the fact that the edges are undirected and for cycle prevention. However, this straightforward approach collapses when, as is the case with the IMBd data, there are very many paths between most pairs of actors. This brings an exponential explosion in both time to completion and use of memory. The Bacon Numbers account shows how to avoid this collapse by implementing the algorithm that the recursive CTE implements using explicit SQL issued from a PL/pgSQL stored procedure. This allows early pruning to leave only the shortest paths with each repetition of the recursive term.

  • Syntax
  • Restrictions
    • Maximum one recursive CTE
    • The recursive CTE must be first in the clause
    • The recursive term must be parenthesised to allow this to use a WITH clause
    • Aggregate functions are not allowed in a recursive term
  • Semantics
    • Pseudocode definition of the semantics
    • PL/pgSQL procedure implementation of the pseudocode : example 1
    • PL/pgSQL procedure implementation of the pseudocode : example 2
  • Case studies
Ask our community
  • Slack
  • Github
  • Forum
  • StackOverflow
Yugabyte
Contact Us
Copyright © 2017-2022 Yugabyte, Inc. All rights reserved.