Join us on YugabyteDB Community Slack
Star us on
Get Started
Slack
GitHub
Get Started
v2.13 (latest) v2.12 (stable) v2.8 (earlier version) v2.6 (earlier version) v2.4 (earlier version) v2.2 (earlier version) v2.1 (earlier version) v2.0 (earlier version) v1.3 (earlier version)
  • YUGABYTEDB CORE
    • Quick start
      • 1. Install YugabyteDB
      • 2. Create a local cluster
      • 3. Explore distributed SQL
      • 4. Build an application
        • Java
        • Node.js
        • Go
        • Python
        • Ruby
        • C#
        • PHP
        • C++
        • C
        • Scala
    • Explore
      • SQL features
        • Schemas and Tables
        • Data Types
        • Data Manipulation
        • Queries and Joins
        • Expressions and Operators
        • Stored Procedures
        • Triggers
        • Advanced features
          • Cursors
          • Table Partitioning
          • Views
          • Savepoints
          • Collations
          • Extensions
        • Going beyond SQL
          • Follower reads
          • Tablespaces
      • Fault tolerance
      • Horizontal scalability
        • Scaling Transactions
        • Sharding Data
      • Transactions
        • Distributed Transactions
        • Isolation Levels
        • Explicit Locking
      • Indexes and Constraints
        • Overview
        • Unique Indexes
        • Partial Indexes
        • Expression Indexes
        • Generalized Inverted Indexes
        • Primary Key
        • Foreign Key
        • Other Constraints
      • JSON support
      • Multi-region deployments
        • Sync replication (3+ regions)
        • Async Replication (2+ regions)
        • Row-Level Geo-Partitioning
        • Read replicas
      • Query tuning
        • Introduction
        • Get query statistics using pg_stat_statements
        • Viewing live queries with pg_stat_activity
        • Analyzing queries with EXPLAIN
        • Optimizing YSQL queries using pg_hint_plan
      • Cluster management
        • Point-in-time recovery
      • Security
      • Observability
        • Prometheus Integration
        • Grafana Dashboard
    • Develop
      • Learn app development
        • 1. SQL vs NoSQL
        • 2. Data modeling
        • 3. Data types
        • 4. ACID transactions
        • 5. Aggregations
        • 6. Batch operations
        • 7. Date and time
        • 8. Strings and text
        • 9. TTL for data expiration
      • Real-world examples
        • E-Commerce app
        • IoT fleet management
      • Explore sample apps
      • Best practices
      • Cloud-native development
        • Codespaces
        • Gitpod
    • Migrate
      • Migration process overview
      • Migrate from PostgreSQL
        • Convert a PostgreSQL schema
        • Migrate a PostgreSQL application
        • Export PostgreSQL data
        • Prepare a cluster
        • Import PostgreSQL data
        • Verify Migration
    • Deploy
      • Deployment checklist
      • Manual deployment
        • 1. System configuration
        • 2. Install software
        • 3. Start YB-Masters
        • 4. Start YB-TServers
        • 5. Verify deployment
      • Kubernetes
        • Single-zone
          • Open Source
          • Amazon EKS
          • Google Kubernetes Engine
          • Azure Kubernetes Service
        • Multi-zone
          • Amazon EKS
          • Google Kubernetes Engine
        • Multi-cluster
          • Google Kubernetes Engine
        • Best practices
        • Connect Clients
      • Docker
      • Public clouds
        • Amazon Web Services
        • Google Cloud Platform
        • Microsoft Azure
      • Multi-DC deployments
        • Three+ data center (3DC)
        • Asynchronous Replication
        • Read replica clusters
    • Benchmark
      • TPC-C
      • sysbench
      • YCSB
      • Key-value workload
      • Large datasets
      • Scalability
        • Scaling queries
      • Resilience
        • Jepsen testing
      • Performance Troubleshooting
    • Secure
      • Security checklist
      • Enable Authentication
        • Enable User Authentication
        • Configure ysql_hba_conf_csv
      • Authentication Methods
        • Password Authentication
        • LDAP Authentication
        • Host-Based Authentication
        • Trust Authentication
      • Role-Based Access Control
        • Overview
        • Manage Users and Roles
        • Grant Privileges
        • Row-Level Security (RLS)
        • Column-Level Security
      • Encryption in Transit
        • Create server certificates
        • Enable server-to-server encryption
        • Enable client-to-server encryption
        • Connect to Clusters
        • TLS and authentication
      • Encryption at rest
      • Column-level encryption
      • Audit Logging
        • Configure Audit Logging
        • Session-Level Audit Logging
        • Object-Level Audit Logging
      • Vulnerability disclosure policy
    • Manage
      • Back up and restore
        • Back up data
        • Restore data
        • Point-in-time recovery
        • Snapshot and restore data
      • Migrate data
        • Bulk import
        • Bulk export
      • Change cluster configuration
      • Diagnostics reporting
      • Upgrade a deployment
      • Grow cluster
    • Troubleshoot
      • Troubleshooting
      • Cluster level issues
        • YCQL connection issues
        • YEDIS connection Issues
        • Recover tserver/master
        • Replace a failed YB-TServer
        • Replace a failed YB-Master
        • Manual remote bootstrap when a majority of peers fail
      • Node level issues
        • Check servers
        • Inspect logs
        • System statistics
        • Disk failure
        • Common error messages
    • Contribute
      • Core database
        • Contribution checklist
        • Build the source
        • Configure a CLion project
        • Run the tests
        • Coding style
  • YUGABYTE PLATFORM
    • Overview
      • Install
      • Configure
    • Install Yugabyte Platform
      • Prerequisites
      • Prepare the environment
      • Install software
      • Prepare nodes (on-prem)
      • Uninstall software
    • Configure Yugabyte Platform
      • Create admin user
      • Configure the cloud provider
      • Configure the backup target
      • Configure alerts
    • Create deployments
      • Multi-zone universe
      • Multi-region universe
      • Multi-cloud universe
      • Read replica cluster
      • Asynchronous replication
    • Manage deployments
      • Start and stop processes
      • Add a node
      • Eliminate an unresponsive node
      • Enable high availability
      • Edit configuration flags
      • Edit a universe
      • Delete a universe
      • Configure instance tags
      • Upgrade YugabyteDB software
      • Migrate to Helm 3
    • Back up universes
      • Configure backup storage
      • Back up universe data
      • Restore universe data
      • Schedule data backups
    • Security
      • Security checklist
      • Customize ports
      • LDAP authentication
      • Authorization platform
      • Create a KMS configuration
      • Enable encryption at rest
      • Enable encryption in transit (TLS)
      • Network security
    • Alerts and monitoring
      • Alerts
      • Live Queries dashboard
      • Slow Queries dashboard
    • Troubleshoot
      • Install and upgrade issues
      • Universe issues
    • Administer Yugabyte Platform
      • Back Up Yugabyte Platform
      • Authenticate with LDAP
    • Upgrade Yugabyte Platform
      • Upgrade using Replicated
  • YUGABYTE CLOUD
    • Overview
    • Quick start
      • Create a free cluster
      • Connect to the cluster
      • Create a database
      • Explore distributed SQL
      • Build an application
        • Before you begin
        • Java
        • Go
        • Python
        • Node.js
        • C
        • C++
        • C#
        • Ruby
        • Rust
        • PHP
    • Deploy clusters
      • Planning a cluster
      • Create a free cluster
      • Create a standard cluster
      • VPC network
        • Overview
        • Set up a VPC network
        • VPCs
        • Peering Connections
    • Secure clusters
      • IP allow lists
      • Database authorization
      • Add database users
      • Encryption in transit
      • Audit cloud activity
    • Connect to clusters
      • Cloud Shell
      • Client shell
      • Connect applications
    • Alerts and monitoring
      • Alerts
      • Performance metrics
      • Live queries
      • Slow YSQL queries
      • Cluster activity
    • Manage clusters
      • Backup and restore
      • Scale and configure clusters
      • Create extensions
    • Administer Yugabyte Cloud
      • Manage cloud users
      • Manage billing
      • Cluster costs
    • Example applications
      • Connect a Spring application
      • Connect a YCQL Java application
      • Hasura Cloud
      • Deploy a GraphQL application
    • Security architecture
      • Security architecture
      • Shared responsibility model
    • Troubleshoot
    • Yugabyte Cloud FAQ
    • What's new
  • INTEGRATIONS
    • Apache Kafka
    • Apache Spark
    • JanusGraph
    • KairosDB
    • Presto
    • Metabase
    • WSO2 Identity Server
    • YSQL Loader
    • Yugabyte JDBC Driver
    • Prisma
    • Hasura
      • Application Development
      • Benchmarking
    • Spring Framework
      • Spring Data YugabyteDB
      • Spring Data Cassandra
    • Flyway
    • GORM
    • Liquibase
    • Sequelize
    • SQLAlchemy
    • Entity Framework
    • Django REST framework
  • REFERENCE
    • Architecture
      • Design goals
      • Key concepts
        • Universe
        • YB-TServer Service
        • YB-Master Service
      • Core functions
        • Universe creation
        • Table creation
        • Write IO path
        • Read IO path
        • High availability
      • Layered architecture
      • Query layer
        • Overview
      • DocDB transactions layer
        • Transactions overview
        • Transaction isolation levels
        • Explicit locking
        • Read Committed
        • Single-row transactions
        • Distributed transactions
        • Transactional IO path
      • DocDB sharding layer
        • Hash & range sharding
        • Tablet splitting
        • Colocated tables
      • DocDB replication layer
        • Replication
        • xCluster replication
        • Read replicas
        • Change data capture (CDC)
      • DocDB storage layer
        • Persistence
        • Performance
    • APIs
      • YSQL
        • The SQL language
          • SQL statements
            • ABORT
            • ALTER DATABASE
            • ALTER DEFAULT PRIVILEGES
            • ALTER DOMAIN
            • ALTER GROUP
            • ALTER POLICY
            • ALTER ROLE
            • ALTER SEQUENCE
            • ALTER TABLE
            • ALTER USER
            • ANALYZE
            • BEGIN
            • CALL
            • COMMENT
            • COMMIT
            • COPY
            • CREATE AGGREGATE
            • CREATE CAST
            • CREATE DATABASE
            • CREATE DOMAIN
            • CREATE EXTENSION
            • CREATE FUNCTION
            • CREATE GROUP
            • CREATE INDEX
            • CREATE MATERIALIZED VIEW
            • CREATE OPERATOR
            • CREATE OPERATOR CLASS
            • CREATE POLICY
            • CREATE PROCEDURE
            • CREATE ROLE
            • CREATE RULE
            • CREATE SCHEMA
            • CREATE SEQUENCE
            • CREATE TABLE
            • CREATE TABLE AS
            • CREATE TRIGGER
            • CREATE TYPE
            • CREATE USER
            • CREATE VIEW
            • DEALLOCATE
            • DELETE
            • DO
            • DROP AGGREGATE
            • DROP CAST
            • DROP DATABASE
            • DROP DOMAIN
            • DROP EXTENSION
            • DROP FUNCTION
            • DROP GROUP
            • DROP MATERIALIZED VIEW
            • DROP OPERATOR
            • DROP OPERATOR CLASS
            • DROP OWNED
            • DROP POLICY
            • DROP PROCEDURE
            • DROP ROLE
            • DROP RULE
            • DROP SEQUENCE
            • DROP TABLE
            • DROP TRIGGER
            • DROP TYPE
            • DROP USER
            • END
            • EXECUTE
            • EXPLAIN
            • GRANT
            • INSERT
            • LOCK
            • PREPARE
            • REASSIGN OWNED
            • REFRESH MATERIALIZED VIEW
            • RELEASE SAVEPOINT
            • RESET
            • REVOKE
            • ROLLBACK
            • ROLLBACK TO SAVEPOINT
            • SAVEPOINT
            • SELECT
            • SET
            • SET CONSTRAINTS
            • SET ROLE
            • SET SESSION AUTHORIZATION
            • SET TRANSACTION
            • SHOW
            • SHOW TRANSACTION
            • TRUNCATE
            • UPDATE
            • VALUES
          • WITH clause
            • WITH clause—SQL syntax and semantics
            • recursive CTE
            • case study—traversing an employee hierarchy
            • traversing general graphs
              • graph representation
              • common code
              • undirected cyclic graph
              • directed cyclic graph
              • directed acyclic graph
              • rooted tree
              • Unique containing paths
              • Stress testing find_paths()
            • case study—Bacon Numbers from IMDb
              • Bacon numbers for synthetic data
              • Bacon numbers for IMDb data
        • Data types
          • Array
            • array[] constructor
            • Literals
              • Text typecasting and literals
              • Array of primitive values
              • Row
              • Array of rows
            • FOREACH loop (PL/pgSQL)
            • array of DOMAINs
            • Functions and operators
              • ANY and ALL
              • Array comparison
              • Array slice operator
              • Array concatenation
              • Array properties
              • array_agg(), unnest(), generate_subscripts()
              • array_fill()
              • array_position(), array_positions()
              • array_remove()
              • array_replace() / set value
              • array_to_string()
              • string_to_array()
          • Binary
          • Boolean
          • Character
          • Date and time
            • Conceptual background
            • Timezones and UTC offsets
              • Catalog views
              • Extended_timezone_names
                • Unrestricted full projection
                • Real timezones with DST
                • Real timezones no DST
                • Synthetic timezones no DST
              • Offset/timezone-sensitive operations
                • Timestamptz to/from timestamp conversion
                • Pure 'day' interval arithmetic
              • Four ways to specify offset
                • Name-resolution rules
                  • 1 case-insensitive resolution
                  • 2 ~names.abbrev never searched
                  • 3 'set timezone' string not resolved in ~abbrevs.abbrev
                  • 4 ~abbrevs.abbrev before ~names.name
                  • Helper functions
              • Syntax contexts for offset
              • Recommended practice
            • Typecasting between date-time and text-values
            • Semantics of the date-time data types
              • Date data type
              • Time data type
              • Plain timestamp and timestamptz
              • Interval data type
                • Interval representation
                  • Ad hoc examples
                  • Representation model
                • Interval value limits
                • Declaring intervals
                • Justify() and extract(epoch...)
                • Interval arithmetic
                  • Interval-interval comparison
                  • Interval-interval addition and subtraction
                  • Interval-number multiplication
                  • Moment-moment overloads of "-"
                  • Moment-interval overloads of "+" and "-"
                • Custom interval domains
                • Interval utility functions
            • Typecasting between date-time datatypes
            • Operators
              • Test comparison overloads
              • Test addition overloads
              • Test subtraction overloads
              • Test multiplication overloads
              • Test division overloads
            • General-purpose functions
              • Creating date-time values
              • Manipulating date-time values
              • Current date-time moment
              • Delaying execution
              • Miscellaneous
                • Function age()
                • Function extract() | date_part()
                • Implementations that model the overlaps operator
            • Formatting functions
            • Case study—SQL stopwatch
            • Download & install the date-time utilities
            • ToC
          • JSON
            • JSON literals
            • Primitive and compound data types
            • Code example conventions
            • Indexes and check constraints
            • Functions & operators
              • ::jsonb, ::json, ::text (typecast)
              • ->, ->>, #>, #>> (JSON subvalues)
              • - and #- (remove)
              • || (concatenation)
              • = (equality)
              • @> and <@ (containment)
              • ? and ?| and ?& (key or value existence)
              • array_to_json()
              • jsonb_agg()
              • jsonb_array_elements()
              • jsonb_array_elements_text()
              • jsonb_array_length()
              • jsonb_build_object()
              • jsonb_build_array()
              • jsonb_each()
              • jsonb_each_text()
              • jsonb_extract_path()
              • jsonb_extract_path_text() and json_extract_path_text()
              • jsonb_object()
              • jsonb_object_agg()
              • jsonb_object_keys()
              • jsonb_populate_record()
              • jsonb_populate_recordset()
              • jsonb_pretty()
              • jsonb_set() and jsonb_insert()
              • jsonb_strip_nulls()
              • jsonb_to_record()
              • jsonb_to_recordset()
              • jsonb_typeof()
              • row_to_json()
              • to_jsonb()
          • Money
          • Numeric
          • Range
          • Serial
          • UUID
        • Functions and operators
          • Aggregate functions
            • Informal functionality overview
            • Invocation syntax and semantics
            • grouping sets, rollup, cube
            • Per function signature and purpose
              • avg(), count(), max(), min(), sum()
              • array_agg(), string_agg(), jsonb_agg(), jsonb_object_agg()
              • bit_and(), bit_or(), bool_and(), bool_or()
              • variance(), var_pop(), var_samp(), stddev(), stddev_pop(), stddev_samp()
              • linear regression
                • covar_pop(), covar_samp(), corr()
                • regr_%()
              • mode(), percentile_disc(), percentile_cont()
              • rank(), dense_rank(), percent_rank(), cume_dist()
            • case study—percentile_cont() and the "68–95–99.7" rule
            • case study—linear regression on COVID data
              • Download the COVIDcast data
              • Ingest the COVIDcast data
                • Inspect the COVIDcast data
                • Copy the .csv files to staging tables
                • Check staged data conforms to the rules
                • Join the staged data into a single table
                • SQL scripts
                  • Create cr_staging_tables()
                  • Create cr_copy_from_scripts()
                  • Create assert_assumptions_ok()
                  • Create xform_to_covidcast_fb_survey_results()
                  • ingest-the-data.sql
              • Analyze the COVIDcast data
                • symptoms vs mask-wearing by day
                • Data for scatter-plot for 21-Oct-2020
                • Scatter-plot for 21-Oct-2020
                • SQL scripts
                  • analysis-queries.sql
                  • synthetic-data.sql
          • currval()
          • lastval()
          • nextval()
          • Window functions
            • Informal functionality overview
            • Invocation syntax and semantics
            • Per function signature and purpose
              • row_number(), rank() and dense_rank()
              • percent_rank(), cume_dist() and ntile()
              • first_value(), nth_value(), last_value()
              • lag(), lead()
              • Tables for the code examples
                • table t1
                • table t2
                • table t3
                • table t4
            • case study—analyzing a normal distribution
              • Bucket allocation scheme
              • do_clean_start.sql
              • cr_show_t4.sql
              • cr_dp_views.sql
              • cr_int_views.sql
              • cr_pr_cd_equality_report.sql
              • cr_bucket_using_width_bucket.sql
              • cr_bucket_dedicated_code.sql
              • do_assert_bucket_ok
              • cr_histogram.sql
              • cr_do_ntile.sql
              • cr_do_percent_rank.sql
              • cr_do_cume_dist.sql
              • do_populate_results.sql
              • do_report_results.sql
              • do_compare_dp_results.sql
              • do_demo.sql
              • Reports
                • Histogram report
                • dp-results
                • compare-dp-results
                • int-results
          • yb_hash_code()
        • Extensions
        • Keywords
        • Reserved names
      • YCQL
        • ALTER KEYSPACE
        • ALTER ROLE
        • ALTER TABLE
        • CREATE INDEX
        • CREATE KEYSPACE
        • CREATE ROLE
        • CREATE TABLE
        • CREATE TYPE
        • DROP INDEX
        • DROP KEYSPACE
        • DROP ROLE
        • DROP TABLE
        • DROP TYPE
        • GRANT PERMISSION
        • GRANT ROLE
        • REVOKE PERMISSION
        • REVOKE ROLE
        • USE
        • INSERT
        • SELECT
        • EXPLAIN
        • UPDATE
        • DELETE
        • TRANSACTION
        • TRUNCATE
        • Simple expressions
        • Subscripted expressions
        • Function call
        • Operators
        • BLOB
        • BOOLEAN
        • Collection
        • FROZEN
        • INET
        • Integer and counter
        • Non-integer
        • TEXT
        • DATE, TIME, and TIMESTAMP
        • UUID and TIMEUUID
        • JSONB
        • Date and time
        • BATCH
    • CLIs
      • yb-ctl
      • yb-docker-ctl
      • ysqlsh
      • ycqlsh
      • yb-admin
      • yb-ts-cli
      • ysql_dump
      • ysql_dumpall
    • Configuration
      • yb-tserver
      • yb-master
      • yugabyted
      • Default ports
    • Drivers
      • Client drivers for YSQL
      • Client drivers for YCQL
    • Connectors
      • Kafka Connect YugabyteDB
    • Third party tools
      • Arctype
      • DBeaver
      • DbSchema
      • pgAdmin
      • SQL Workbench/J
      • TablePlus
      • Visual Studio Code
    • Sample datasets
      • Chinook
      • Northwind
      • PgExercises
      • SportsDB
      • Retail Analytics
  • RELEASES
    • Releases overview
      • v2.13 series (latest)
      • v2.12 series (stable)
      • v2.11 series
      • v2.9 series
      • v2.8 series
      • v2.7 series
      • v2.6 series
      • v2.5 series
      • v2.4 series
      • v2.3 series
      • v2.2 series
      • v2.1 series
      • v2.0 series
      • v1.3 series
      • v1.2 series
    • Release versioning
  • FAQ
    • Comparisons
      • Amazon Aurora
      • Google Cloud Spanner
      • CockroachDB
      • TiDB
      • Vitess
      • MongoDB
      • FoundationDB
      • Amazon DynamoDB
      • Azure Cosmos DB
      • Apache Cassandra
      • PostgreSQL
      • Redis in-memory store
      • Apache HBase
    • General FAQ
    • Operations FAQ
    • API compatibility FAQ
    • Yugabyte Platform FAQ
  • MISC
    • YEDIS
      • Quick start
      • Develop
        • Build an application
        • C#
        • C++
        • Go
        • Java
        • NodeJS
        • Python
      • API reference
        • APPEND
        • AUTH
        • CONFIG
        • CREATEDB
        • DELETEDB
        • LISTDB
        • SELECT
        • DEL
        • ECHO
        • EXISTS
        • EXPIRE
        • EXPIREAT
        • FLUSHALL
        • FLUSHDB
        • GET
        • GETRANGE
        • GETSET
        • HDEL
        • HEXISTS
        • HGET
        • HGETALL
        • HINCRBY
        • HKEYS
        • HLEN
        • HMGET
        • HMSET
        • HSET
        • HSTRLEN
        • HVALS
        • INCR
        • INCRBY
        • KEYS
        • MONITOR
        • PEXPIRE
        • PEXPIREAT
        • PTTL
        • ROLE
        • SADD
        • SCARD
        • RENAME
        • SET
        • SETEX
        • PSETEX
        • SETRANGE
        • SISMEMBER
        • SMEMBERS
        • SREM
        • STRLEN
        • ZRANGE
        • TSADD
        • TSCARD
        • TSGET
        • TSLASTN
        • TSRANGEBYTIME
        • TSREM
        • TSREVRANGEBYTIME
        • TTL
        • ZADD
        • ZCARD
        • ZRANGEBYSCORE
        • ZREM
        • ZREVRANGE
        • ZSCORE
        • PUBSUB
        • PUBLISH
        • SUBSCRIBE
        • UNSUBSCRIBE
        • PSUBSCRIBE
        • PUNSUBSCRIBE
    • Legal
      • Third party software
> APIs > YSQL > Functions and operators > Aggregate functions > Per function signature and purpose >

Within-group hypothetical-set aggregate functions

Report a doc issue Suggest new content
  • rank()
  • dense_rank()
  • percent_rank()
  • cume_dist()
  • Semantics demonstration

This section describes the uses of rank(), dense_rank(), percent_rank(), and cume_dist() as "within-group hypothetical-set" aggregate functions.

The same functions can also be invoked as window functions. That use is described here:

  • rank()
  • dense_rank()
  • percent_rank()
  • cume_dist()

The basic semantic definition of each function is the same in each invocation scenario. But the goals of the two invocation methods are critically different.

Syntax example: Suppose that table "t" can be populated like this:

insert into t(g1,... gN, v1,... vN) values (:a,... :b, :c,... :d);

The columns with names like "gN" represent the grouping columns and the columns with names like "vN" represent the columns whose values will be used to invoke the function. In the "within-group hypothetical-set" use, the function "f()" would be invoked like this:

select
  g1,... gN,
  f(:v1,... :vN) within group (order by v1,... vN)
from t
group by g1,... gN;

For each of these hypothetical-set aggregates, the list of actual arguments specified for the function must match the number and types of the column expressions specified following ORDER BY.

Consider this counter-example:

select
  g1
  f(:v1,... :vN) within group (order by v1,... vN)
from t;

Notice that "g1" is not mentioned in a group by clause. It causes this error:

42803: column "t.g1" must appear in the GROUP BY clause or be used in an aggregate function

Generic purpose: Suppose that "f()" is invoked as a window function like this:

select
  g1,... gN, v1,... vN,
  f() over(partition by g1,... gN order by v1,... vN)
from t;

Imagine, hypothetically, that, now, a row is inserted with a particular set of values for "(g1,... gN, v1,... vN)", that the same SELECT is repeated, and that the value returned by "f()" for the new row is "x". The data type of "x" is function-specific. It's bigint for rank() and dense_rank(). And it's double precision for percent_rank() and cume_dist(). This thought experiment can be trivially conducted in actuality simply by starting a transaction, inserting the new row, running the query, noting the result for the new row, and then rolling back.

Suppose that, instead of doing the hypothetical insert, the function is invoked using the "within-group hypothetical-set" syntax shown above using the values for "(v1,... vN)" that were hypothetically used for the thought experiment. The result will be, for the hypothesized values for "(g1,... gN)", the same as would have been seen if the "start transaction;... rollback;" approach had been used. But, beyond this, values will be produced for each possible combination of values for "(g1,... gN)" that occur in the table at the moment that the SELECT statement is executed. (The expressions "g1,... gN" are those that are mentioned in the GROUP BY clause.) See the Semantics demonstration section.

Unlike most built-in aggregate functions, these aggregate functions are not strict—that is they do not filter out rows containing NULLs. Rather, NULLs sort according to the rule specified in the ORDER BY clause.

rank()

Signature:

input value:       VARIADIC "any" ORDER BY VARIADIC "any"
                   
return value:      bigint

Purpose: Returns the integer ordinal rank of each row according to the emergent order that the window ORDER BY clause specifies. The series of values starts with 1 but, when the window contains ties, the series is not dense.

See the account of rank() in the Window functions section for more information.

dense_rank()

Signature:

input value:       VARIADIC "any" ORDER BY VARIADIC "any"
                   
return value:      bigint

Purpose: Returns the integer ordinal rank of the distinct value of each row according to what the window ORDER BY clause specifies. The series of values starts with 1 and, even when the window contains ties, the series is dense.

See the account of dense_rank() in the Window functions section for more information.

percent_rank()

Signature:

input value:       VARIADIC "any" ORDER BY VARIADIC "any"
                   
return value:      double precision

Purpose: Returns the percentile rank of each row within the window, with respect to the argument of the window_definition's window ORDER BY clause. The value p returned by percent_rank() is a number in the range 0 <= p <= 1. It is calculated like this:

percentile_rank = (rank - 1) / ("no. of rows in window" - 1)

See the account of percent_rank() in the Window functions section for more information.

cume_dist()

input value:       VARIADIC "any" ORDER BY VARIADIC "any"
                   
return value:      double precision

Purpose: Returns a value that represents the number of rows with values less than or equal to the current row’s value divided by the total number of rows—in other words, the relative position of a value in a set of values. The graph of all values of cume_dist() within the window is known as the cumulative distribution of the argument of the window_definition's window ORDER BY clause. The value c returned by cume_dist() is a number in the range 0 <= c <= 1. It is calculated like this:

cume_dist() =
  "no of rows with a value <= the current row's value" /
  "no. of rows in window"

See the account of cume_dist() in the Window functions section for more information.

Semantics demonstration

First, create and populate the test table:

drop table if exists t cascade;
create table t(
  k      int primary key,
  class  int not null,
  score  int);

insert into t(k, class, score)
with a as (
  select s.v from generate_series(1, 10) as s(v))
values(0, 1, null::int)
union all
select
  v,
  ntile(2) over (order by v),
  case v <= 5
    when true then v*2
              else (v - 5)*2
  end
from a;

\pset null <null>
select class, score
from t
order by class, score nulls first;

This is the result:

 class | score  
-------+--------
     1 | <null>
     1 |      2
     1 |      4
     1 |      6
     1 |      8
     1 |     10
     2 |      2
     2 |      4
     2 |      6
     2 |      8
     2 |     10

Next, create a view defined by a SELECT statement that invokes the four functions of interest as window functions:

create or replace view v as
select
  k,
  class,
  score,
  (rank()         over w) as r,
  (dense_rank()   over w) as dr,
  (percent_rank() over w) as pr,
  (cume_dist()    over w) as cd
from t
window w as (partition by class order by score nulls first);

Visualize the results that the view defines:

select
  class, score, r, dr, to_char(pr, '90.99') as pr, to_char(cd, '90.99') as cd
from v
order by class, r;

This is the result:

 class | score  | r | dr |   pr   |   cd   
-------+--------+---+----+--------+--------
     1 | <null> | 1 |  1 |   0.00 |   0.17
     1 |      2 | 2 |  2 |   0.20 |   0.33
     1 |      4 | 3 |  3 |   0.40 |   0.50
     1 |      6 | 4 |  4 |   0.60 |   0.67
     1 |      8 | 5 |  5 |   0.80 |   0.83
     1 |     10 | 6 |  6 |   1.00 |   1.00
     2 |      2 | 1 |  1 |   0.00 |   0.20
     2 |      4 | 2 |  2 |   0.25 |   0.40
     2 |      6 | 3 |  3 |   0.50 |   0.60
     2 |      8 | 4 |  4 |   0.75 |   0.80
     2 |     10 | 5 |  5 |   1.00 |   1.00

Now, simulate the hypothetical insert of two new rows, one in each class, and visualize the values that the four functions of interest produce for them. Do this within a transaction that you rollback.

start transaction;
insert into t(k, class, score) values (21, 1, 5), (22, 2, 6);

select
  class, score, r, dr, to_char(pr, '90.99') as pr, to_char(cd, '90.99') as cd
from v
where k in (21, 22)
order by class, r;

rollback;

This is the result:

 class | score | r | dr |   pr   |   cd   
-------+-------+---+----+--------+--------
     1 |     5 | 4 |  4 |   0.50 |   0.57
     2 |     6 | 3 |  3 |   0.40 |   0.67

Next, create a table function, parameterized by the value of the hypothetical to-be-inserted score, to show the result of the "Within-group hypothetical-set" invocation of the four functions of interest:

drop function if exists h(int) cascade;
create function h(hypothetical_score in int)
  returns table(
    class int,
    score int,
    r bigint,
    dr bigint,
    pr double precision,
    cd double precision)
  language sql
as $body$
  with v as (
    select
      class,
      rank(hypothetical_score)         within group (order by score nulls first) as r,
      dense_rank(hypothetical_score)   within group (order by score nulls first) as dr,
      percent_rank(hypothetical_score) within group (order by score nulls first) as pr,
      cume_dist(hypothetical_score)    within group (order by score nulls first) as cd
    from t
    group by class)
  select class, hypothetical_score as score, r, dr, pr, cd from v;
$body$;

First invoke it with a hypothetical score of 5:

select
  class, score, r, dr, to_char(pr, '90.99') as pr, to_char(cd, '90.99') as cd
from h(5)
order by class;

This is the result:

 class | score | r | dr |   pr   |   cd   
-------+-------+---+----+--------+--------
     1 |     5 | 4 |  4 |   0.50 |   0.57
     2 |     5 | 3 |  3 |   0.40 |   0.50

Now invoke it with a hypothetical score of 6:

select
  class, score, r, dr, to_char(pr, '90.99') as pr, to_char(cd, '90.99') as cd
from h(6)
order by class;

This is the result:

 class | score | r | dr |   pr   |   cd   
-------+-------+---+----+--------+--------
     1 |     6 | 4 |  4 |   0.50 |   0.71
     2 |     6 | 3 |  3 |   0.40 |   0.67

Notice that, as promised, each invocation produces two rows—one row for each of the two distinct values of "class".

It's easy to produce the identical result that simulating the hypothetical inserts within a rolled back transaction produced:

with v as (
  select class, score, r, dr, pr, cd from h(5) where class = 1
  union all
  select class, score, r, dr, pr, cd from h(6) where class = 2)
select
  class, score, r, dr, to_char(pr, '90.99') as pr, to_char(cd, '90.99') as cd
from v
order by class;

This is the result:

 class | score | r | dr |   pr   |   cd   
-------+-------+---+----+--------+--------
     1 |     5 | 4 |  4 |   0.50 |   0.57
     2 |     6 | 3 |  3 |   0.40 |   0.67

This is indeed identical to the result that the simulated two hypothetical inserts produced.

  • rank()
  • dense_rank()
  • percent_rank()
  • cume_dist()
  • Semantics demonstration
Ask our community
  • Slack
  • Github
  • Forum
  • StackOverflow
Yugabyte
Contact Us
Copyright © 2017-2022 Yugabyte, Inc. All rights reserved.