Join us on YugabyteDB Community Slack
Star us on
Get Started
Slack
GitHub
Get Started
v2.13 (latest) v2.12 (stable) v2.8 (earlier version) v2.6 (earlier version) v2.4 (earlier version) v2.2 (earlier version) v2.1 (earlier version) v2.0 (earlier version) v1.3 (earlier version)
  • YUGABYTEDB CORE
    • Quick start
      • 1. Install YugabyteDB
      • 2. Create a local cluster
      • 3. Explore distributed SQL
      • 4. Build an application
        • Java
        • Node.js
        • Go
        • Python
        • Ruby
        • C#
        • PHP
        • C++
        • C
        • Scala
    • Explore
      • SQL features
        • Schemas and Tables
        • Data Types
        • Data Manipulation
        • Queries and Joins
        • Expressions and Operators
        • Stored Procedures
        • Triggers
        • Advanced features
          • Cursors
          • Table Partitioning
          • Views
          • Savepoints
          • Collations
          • Extensions
        • Going beyond SQL
          • Follower reads
          • Tablespaces
      • Fault tolerance
      • Horizontal scalability
        • Scaling Transactions
        • Sharding Data
      • Transactions
        • Distributed Transactions
        • Isolation Levels
        • Explicit Locking
      • Indexes and Constraints
        • Overview
        • Unique Indexes
        • Partial Indexes
        • Expression Indexes
        • Generalized Inverted Indexes
        • Primary Key
        • Foreign Key
        • Other Constraints
      • JSON support
      • Multi-region deployments
        • Sync replication (3+ regions)
        • Async Replication (2+ regions)
        • Row-Level Geo-Partitioning
        • Read replicas
      • Query tuning
        • Introduction
        • Get query statistics using pg_stat_statements
        • Viewing live queries with pg_stat_activity
        • Analyzing queries with EXPLAIN
        • Optimizing YSQL queries using pg_hint_plan
      • Cluster management
        • Point-in-time recovery
      • Security
      • Observability
        • Prometheus Integration
        • Grafana Dashboard
    • Develop
      • Learn app development
        • 1. SQL vs NoSQL
        • 2. Data modeling
        • 3. Data types
        • 4. ACID transactions
        • 5. Aggregations
        • 6. Batch operations
        • 7. Date and time
        • 8. Strings and text
        • 9. TTL for data expiration
      • Real-world examples
        • E-Commerce app
        • IoT fleet management
      • Explore sample apps
      • Best practices
      • Cloud-native development
        • Codespaces
        • Gitpod
    • Migrate
      • Migration process overview
      • Migrate from PostgreSQL
        • Convert a PostgreSQL schema
        • Migrate a PostgreSQL application
        • Export PostgreSQL data
        • Prepare a cluster
        • Import PostgreSQL data
        • Verify Migration
    • Deploy
      • Deployment checklist
      • Manual deployment
        • 1. System configuration
        • 2. Install software
        • 3. Start YB-Masters
        • 4. Start YB-TServers
        • 5. Verify deployment
      • Kubernetes
        • Single-zone
          • Open Source
          • Amazon EKS
          • Google Kubernetes Engine
          • Azure Kubernetes Service
        • Multi-zone
          • Amazon EKS
          • Google Kubernetes Engine
        • Multi-cluster
          • Google Kubernetes Engine
        • Best practices
        • Connect Clients
      • Docker
      • Public clouds
        • Amazon Web Services
        • Google Cloud Platform
        • Microsoft Azure
      • Multi-DC deployments
        • Three+ data center (3DC)
        • Asynchronous Replication
        • Read replica clusters
    • Benchmark
      • TPC-C
      • sysbench
      • YCSB
      • Key-value workload
      • Large datasets
      • Scalability
        • Scaling queries
      • Resilience
        • Jepsen testing
      • Performance Troubleshooting
    • Secure
      • Security checklist
      • Enable Authentication
        • Enable User Authentication
        • Configure ysql_hba_conf_csv
      • Authentication Methods
        • Password Authentication
        • LDAP Authentication
        • Host-Based Authentication
        • Trust Authentication
      • Role-Based Access Control
        • Overview
        • Manage Users and Roles
        • Grant Privileges
        • Row-Level Security (RLS)
        • Column-Level Security
      • Encryption in Transit
        • Create server certificates
        • Enable server-to-server encryption
        • Enable client-to-server encryption
        • Connect to Clusters
        • TLS and authentication
      • Encryption at rest
      • Column-level encryption
      • Audit Logging
        • Configure Audit Logging
        • Session-Level Audit Logging
        • Object-Level Audit Logging
      • Vulnerability disclosure policy
    • Manage
      • Back up and restore
        • Back up data
        • Restore data
        • Point-in-time recovery
        • Snapshot and restore data
      • Migrate data
        • Bulk import
        • Bulk export
      • Change cluster configuration
      • Diagnostics reporting
      • Upgrade a deployment
      • Grow cluster
    • Troubleshoot
      • Troubleshooting
      • Cluster level issues
        • YCQL connection issues
        • YEDIS connection Issues
        • Recover tserver/master
        • Replace a failed YB-TServer
        • Replace a failed YB-Master
        • Manual remote bootstrap when a majority of peers fail
      • Node level issues
        • Check servers
        • Inspect logs
        • System statistics
        • Disk failure
        • Common error messages
    • Contribute
      • Core database
        • Contribution checklist
        • Build the source
        • Configure a CLion project
        • Run the tests
        • Coding style
  • YUGABYTE PLATFORM
    • Overview
      • Install
      • Configure
    • Install Yugabyte Platform
      • Prerequisites
      • Prepare the environment
      • Install software
      • Prepare nodes (on-prem)
      • Uninstall software
    • Configure Yugabyte Platform
      • Create admin user
      • Configure the cloud provider
      • Configure the backup target
      • Configure alerts
    • Create deployments
      • Multi-zone universe
      • Multi-region universe
      • Multi-cloud universe
      • Read replica cluster
      • Asynchronous replication
    • Manage deployments
      • Start and stop processes
      • Add a node
      • Eliminate an unresponsive node
      • Enable high availability
      • Edit configuration flags
      • Edit a universe
      • Delete a universe
      • Configure instance tags
      • Upgrade YugabyteDB software
      • Migrate to Helm 3
    • Back up universes
      • Configure backup storage
      • Back up universe data
      • Restore universe data
      • Schedule data backups
    • Security
      • Security checklist
      • Customize ports
      • LDAP authentication
      • Authorization platform
      • Create a KMS configuration
      • Enable encryption at rest
      • Enable encryption in transit (TLS)
      • Network security
    • Alerts and monitoring
      • Alerts
      • Live Queries dashboard
      • Slow Queries dashboard
    • Troubleshoot
      • Install and upgrade issues
      • Universe issues
    • Administer Yugabyte Platform
      • Back Up Yugabyte Platform
      • Authenticate with LDAP
    • Upgrade Yugabyte Platform
      • Upgrade using Replicated
  • YUGABYTE CLOUD
    • Overview
    • Quick start
      • Create a free cluster
      • Connect to the cluster
      • Create a database
      • Explore distributed SQL
      • Build an application
        • Before you begin
        • Java
        • Go
        • Python
        • Node.js
        • C
        • C++
        • C#
        • Ruby
        • Rust
        • PHP
    • Deploy clusters
      • Planning a cluster
      • Create a free cluster
      • Create a standard cluster
      • VPC network
        • Overview
        • Set up a VPC network
        • VPCs
        • Peering Connections
    • Secure clusters
      • IP allow lists
      • Database authorization
      • Add database users
      • Encryption in transit
      • Audit cloud activity
    • Connect to clusters
      • Cloud Shell
      • Client shell
      • Connect applications
    • Alerts and monitoring
      • Alerts
      • Performance metrics
      • Live queries
      • Slow YSQL queries
      • Cluster activity
    • Manage clusters
      • Backup and restore
      • Scale and configure clusters
      • Create extensions
    • Administer Yugabyte Cloud
      • Manage cloud users
      • Manage billing
      • Cluster costs
    • Example applications
      • Connect a Spring application
      • Connect a YCQL Java application
      • Hasura Cloud
      • Deploy a GraphQL application
    • Security architecture
      • Security architecture
      • Shared responsibility model
    • Troubleshoot
    • Yugabyte Cloud FAQ
    • What's new
  • INTEGRATIONS
    • Apache Kafka
    • Apache Spark
    • JanusGraph
    • KairosDB
    • Presto
    • Metabase
    • WSO2 Identity Server
    • YSQL Loader
    • Yugabyte JDBC Driver
    • Prisma
    • Hasura
      • Application Development
      • Benchmarking
    • Spring Framework
      • Spring Data YugabyteDB
      • Spring Data Cassandra
    • Flyway
    • GORM
    • Liquibase
    • Sequelize
    • SQLAlchemy
    • Entity Framework
    • Django REST framework
  • REFERENCE
    • Architecture
      • Design goals
      • Key concepts
        • Universe
        • YB-TServer Service
        • YB-Master Service
      • Core functions
        • Universe creation
        • Table creation
        • Write IO path
        • Read IO path
        • High availability
      • Layered architecture
      • Query layer
        • Overview
      • DocDB transactions layer
        • Transactions overview
        • Transaction isolation levels
        • Explicit locking
        • Read Committed
        • Single-row transactions
        • Distributed transactions
        • Transactional IO path
      • DocDB sharding layer
        • Hash & range sharding
        • Tablet splitting
        • Colocated tables
      • DocDB replication layer
        • Replication
        • xCluster replication
        • Read replicas
        • Change data capture (CDC)
      • DocDB storage layer
        • Persistence
        • Performance
    • APIs
      • YSQL
        • The SQL language
          • SQL statements
            • ABORT
            • ALTER DATABASE
            • ALTER DEFAULT PRIVILEGES
            • ALTER DOMAIN
            • ALTER GROUP
            • ALTER POLICY
            • ALTER ROLE
            • ALTER SEQUENCE
            • ALTER TABLE
            • ALTER USER
            • ANALYZE
            • BEGIN
            • CALL
            • COMMENT
            • COMMIT
            • COPY
            • CREATE AGGREGATE
            • CREATE CAST
            • CREATE DATABASE
            • CREATE DOMAIN
            • CREATE EXTENSION
            • CREATE FUNCTION
            • CREATE GROUP
            • CREATE INDEX
            • CREATE MATERIALIZED VIEW
            • CREATE OPERATOR
            • CREATE OPERATOR CLASS
            • CREATE POLICY
            • CREATE PROCEDURE
            • CREATE ROLE
            • CREATE RULE
            • CREATE SCHEMA
            • CREATE SEQUENCE
            • CREATE TABLE
            • CREATE TABLE AS
            • CREATE TRIGGER
            • CREATE TYPE
            • CREATE USER
            • CREATE VIEW
            • DEALLOCATE
            • DELETE
            • DO
            • DROP AGGREGATE
            • DROP CAST
            • DROP DATABASE
            • DROP DOMAIN
            • DROP EXTENSION
            • DROP FUNCTION
            • DROP GROUP
            • DROP MATERIALIZED VIEW
            • DROP OPERATOR
            • DROP OPERATOR CLASS
            • DROP OWNED
            • DROP POLICY
            • DROP PROCEDURE
            • DROP ROLE
            • DROP RULE
            • DROP SEQUENCE
            • DROP TABLE
            • DROP TRIGGER
            • DROP TYPE
            • DROP USER
            • END
            • EXECUTE
            • EXPLAIN
            • GRANT
            • INSERT
            • LOCK
            • PREPARE
            • REASSIGN OWNED
            • REFRESH MATERIALIZED VIEW
            • RELEASE SAVEPOINT
            • RESET
            • REVOKE
            • ROLLBACK
            • ROLLBACK TO SAVEPOINT
            • SAVEPOINT
            • SELECT
            • SET
            • SET CONSTRAINTS
            • SET ROLE
            • SET SESSION AUTHORIZATION
            • SET TRANSACTION
            • SHOW
            • SHOW TRANSACTION
            • TRUNCATE
            • UPDATE
            • VALUES
          • WITH clause
            • WITH clause—SQL syntax and semantics
            • recursive CTE
            • case study—traversing an employee hierarchy
            • traversing general graphs
              • graph representation
              • common code
              • undirected cyclic graph
              • directed cyclic graph
              • directed acyclic graph
              • rooted tree
              • Unique containing paths
              • Stress testing find_paths()
            • case study—Bacon Numbers from IMDb
              • Bacon numbers for synthetic data
              • Bacon numbers for IMDb data
        • Data types
          • Array
            • array[] constructor
            • Literals
              • Text typecasting and literals
              • Array of primitive values
              • Row
              • Array of rows
            • FOREACH loop (PL/pgSQL)
            • array of DOMAINs
            • Functions and operators
              • ANY and ALL
              • Array comparison
              • Array slice operator
              • Array concatenation
              • Array properties
              • array_agg(), unnest(), generate_subscripts()
              • array_fill()
              • array_position(), array_positions()
              • array_remove()
              • array_replace() / set value
              • array_to_string()
              • string_to_array()
          • Binary
          • Boolean
          • Character
          • Date and time
            • Conceptual background
            • Timezones and UTC offsets
              • Catalog views
              • Extended_timezone_names
                • Unrestricted full projection
                • Real timezones with DST
                • Real timezones no DST
                • Synthetic timezones no DST
              • Offset/timezone-sensitive operations
                • Timestamptz to/from timestamp conversion
                • Pure 'day' interval arithmetic
              • Four ways to specify offset
                • Name-resolution rules
                  • 1 case-insensitive resolution
                  • 2 ~names.abbrev never searched
                  • 3 'set timezone' string not resolved in ~abbrevs.abbrev
                  • 4 ~abbrevs.abbrev before ~names.name
                  • Helper functions
              • Syntax contexts for offset
              • Recommended practice
            • Typecasting between date-time and text-values
            • Semantics of the date-time data types
              • Date data type
              • Time data type
              • Plain timestamp and timestamptz
              • Interval data type
                • Interval representation
                  • Ad hoc examples
                  • Representation model
                • Interval value limits
                • Declaring intervals
                • Justify() and extract(epoch...)
                • Interval arithmetic
                  • Interval-interval comparison
                  • Interval-interval addition and subtraction
                  • Interval-number multiplication
                  • Moment-moment overloads of "-"
                  • Moment-interval overloads of "+" and "-"
                • Custom interval domains
                • Interval utility functions
            • Typecasting between date-time datatypes
            • Operators
              • Test comparison overloads
              • Test addition overloads
              • Test subtraction overloads
              • Test multiplication overloads
              • Test division overloads
            • General-purpose functions
              • Creating date-time values
              • Manipulating date-time values
              • Current date-time moment
              • Delaying execution
              • Miscellaneous
                • Function age()
                • Function extract() | date_part()
                • Implementations that model the overlaps operator
            • Formatting functions
            • Case study—SQL stopwatch
            • Download & install the date-time utilities
            • ToC
          • JSON
            • JSON literals
            • Primitive and compound data types
            • Code example conventions
            • Indexes and check constraints
            • Functions & operators
              • ::jsonb, ::json, ::text (typecast)
              • ->, ->>, #>, #>> (JSON subvalues)
              • - and #- (remove)
              • || (concatenation)
              • = (equality)
              • @> and <@ (containment)
              • ? and ?| and ?& (key or value existence)
              • array_to_json()
              • jsonb_agg()
              • jsonb_array_elements()
              • jsonb_array_elements_text()
              • jsonb_array_length()
              • jsonb_build_object()
              • jsonb_build_array()
              • jsonb_each()
              • jsonb_each_text()
              • jsonb_extract_path()
              • jsonb_extract_path_text() and json_extract_path_text()
              • jsonb_object()
              • jsonb_object_agg()
              • jsonb_object_keys()
              • jsonb_populate_record()
              • jsonb_populate_recordset()
              • jsonb_pretty()
              • jsonb_set() and jsonb_insert()
              • jsonb_strip_nulls()
              • jsonb_to_record()
              • jsonb_to_recordset()
              • jsonb_typeof()
              • row_to_json()
              • to_jsonb()
          • Money
          • Numeric
          • Range
          • Serial
          • UUID
        • Functions and operators
          • Aggregate functions
            • Informal functionality overview
            • Invocation syntax and semantics
            • grouping sets, rollup, cube
            • Per function signature and purpose
              • avg(), count(), max(), min(), sum()
              • array_agg(), string_agg(), jsonb_agg(), jsonb_object_agg()
              • bit_and(), bit_or(), bool_and(), bool_or()
              • variance(), var_pop(), var_samp(), stddev(), stddev_pop(), stddev_samp()
              • linear regression
                • covar_pop(), covar_samp(), corr()
                • regr_%()
              • mode(), percentile_disc(), percentile_cont()
              • rank(), dense_rank(), percent_rank(), cume_dist()
            • case study—percentile_cont() and the "68–95–99.7" rule
            • case study—linear regression on COVID data
              • Download the COVIDcast data
              • Ingest the COVIDcast data
                • Inspect the COVIDcast data
                • Copy the .csv files to staging tables
                • Check staged data conforms to the rules
                • Join the staged data into a single table
                • SQL scripts
                  • Create cr_staging_tables()
                  • Create cr_copy_from_scripts()
                  • Create assert_assumptions_ok()
                  • Create xform_to_covidcast_fb_survey_results()
                  • ingest-the-data.sql
              • Analyze the COVIDcast data
                • symptoms vs mask-wearing by day
                • Data for scatter-plot for 21-Oct-2020
                • Scatter-plot for 21-Oct-2020
                • SQL scripts
                  • analysis-queries.sql
                  • synthetic-data.sql
          • currval()
          • lastval()
          • nextval()
          • Window functions
            • Informal functionality overview
            • Invocation syntax and semantics
            • Per function signature and purpose
              • row_number(), rank() and dense_rank()
              • percent_rank(), cume_dist() and ntile()
              • first_value(), nth_value(), last_value()
              • lag(), lead()
              • Tables for the code examples
                • table t1
                • table t2
                • table t3
                • table t4
            • case study—analyzing a normal distribution
              • Bucket allocation scheme
              • do_clean_start.sql
              • cr_show_t4.sql
              • cr_dp_views.sql
              • cr_int_views.sql
              • cr_pr_cd_equality_report.sql
              • cr_bucket_using_width_bucket.sql
              • cr_bucket_dedicated_code.sql
              • do_assert_bucket_ok
              • cr_histogram.sql
              • cr_do_ntile.sql
              • cr_do_percent_rank.sql
              • cr_do_cume_dist.sql
              • do_populate_results.sql
              • do_report_results.sql
              • do_compare_dp_results.sql
              • do_demo.sql
              • Reports
                • Histogram report
                • dp-results
                • compare-dp-results
                • int-results
          • yb_hash_code()
        • Extensions
        • Keywords
        • Reserved names
      • YCQL
        • ALTER KEYSPACE
        • ALTER ROLE
        • ALTER TABLE
        • CREATE INDEX
        • CREATE KEYSPACE
        • CREATE ROLE
        • CREATE TABLE
        • CREATE TYPE
        • DROP INDEX
        • DROP KEYSPACE
        • DROP ROLE
        • DROP TABLE
        • DROP TYPE
        • GRANT PERMISSION
        • GRANT ROLE
        • REVOKE PERMISSION
        • REVOKE ROLE
        • USE
        • INSERT
        • SELECT
        • EXPLAIN
        • UPDATE
        • DELETE
        • TRANSACTION
        • TRUNCATE
        • Simple expressions
        • Subscripted expressions
        • Function call
        • Operators
        • BLOB
        • BOOLEAN
        • Collection
        • FROZEN
        • INET
        • Integer and counter
        • Non-integer
        • TEXT
        • DATE, TIME, and TIMESTAMP
        • UUID and TIMEUUID
        • JSONB
        • Date and time
        • BATCH
    • CLIs
      • yb-ctl
      • yb-docker-ctl
      • ysqlsh
      • ycqlsh
      • yb-admin
      • yb-ts-cli
      • ysql_dump
      • ysql_dumpall
    • Configuration
      • yb-tserver
      • yb-master
      • yugabyted
      • Default ports
    • Drivers
      • Client drivers for YSQL
      • Client drivers for YCQL
    • Connectors
      • Kafka Connect YugabyteDB
    • Third party tools
      • Arctype
      • DBeaver
      • DbSchema
      • pgAdmin
      • SQL Workbench/J
      • TablePlus
      • Visual Studio Code
    • Sample datasets
      • Chinook
      • Northwind
      • PgExercises
      • SportsDB
      • Retail Analytics
  • RELEASES
    • Releases overview
      • v2.13 series (latest)
      • v2.12 series (stable)
      • v2.11 series
      • v2.9 series
      • v2.8 series
      • v2.7 series
      • v2.6 series
      • v2.5 series
      • v2.4 series
      • v2.3 series
      • v2.2 series
      • v2.1 series
      • v2.0 series
      • v1.3 series
      • v1.2 series
    • Release versioning
  • FAQ
    • Comparisons
      • Amazon Aurora
      • Google Cloud Spanner
      • CockroachDB
      • TiDB
      • Vitess
      • MongoDB
      • FoundationDB
      • Amazon DynamoDB
      • Azure Cosmos DB
      • Apache Cassandra
      • PostgreSQL
      • Redis in-memory store
      • Apache HBase
    • General FAQ
    • Operations FAQ
    • API compatibility FAQ
    • Yugabyte Platform FAQ
  • MISC
    • YEDIS
      • Quick start
      • Develop
        • Build an application
        • C#
        • C++
        • Go
        • Java
        • NodeJS
        • Python
      • API reference
        • APPEND
        • AUTH
        • CONFIG
        • CREATEDB
        • DELETEDB
        • LISTDB
        • SELECT
        • DEL
        • ECHO
        • EXISTS
        • EXPIRE
        • EXPIREAT
        • FLUSHALL
        • FLUSHDB
        • GET
        • GETRANGE
        • GETSET
        • HDEL
        • HEXISTS
        • HGET
        • HGETALL
        • HINCRBY
        • HKEYS
        • HLEN
        • HMGET
        • HMSET
        • HSET
        • HSTRLEN
        • HVALS
        • INCR
        • INCRBY
        • KEYS
        • MONITOR
        • PEXPIRE
        • PEXPIREAT
        • PTTL
        • ROLE
        • SADD
        • SCARD
        • RENAME
        • SET
        • SETEX
        • PSETEX
        • SETRANGE
        • SISMEMBER
        • SMEMBERS
        • SREM
        • STRLEN
        • ZRANGE
        • TSADD
        • TSCARD
        • TSGET
        • TSLASTN
        • TSRANGEBYTIME
        • TSREM
        • TSREVRANGEBYTIME
        • TTL
        • ZADD
        • ZCARD
        • ZRANGEBYSCORE
        • ZREM
        • ZREVRANGE
        • ZSCORE
        • PUBSUB
        • PUBLISH
        • SUBSCRIBE
        • UNSUBSCRIBE
        • PSUBSCRIBE
        • PUNSUBSCRIBE
    • Legal
      • Third party software
> APIs > YSQL > Data types > Date and time > General-purpose functions >

Functions that return the current date-time moment

Report a doc issue Suggest new content
    • The semantics of "start of transaction", "start of statement", and "instantaneous"
    • Consider user-defined functions rather than 'today', 'tomorrow', and 'yesterday'

Each of the nine functions in this group returns a moment value of the specified data type that honors the "moment kind" semantics. (See the note "Don't use "timeofday()" above. For the reasons that it explains, that function is not included in the count of ten that the table in the subsection Functions that return the current date-time moment presents. This is why the present paragraph starts with "Each of the nine functions...")

Except for the variants current_time(precision), current_timestamp(precision), localtime(precision), and localtimestamp(precision), the functions have no formal parameters. The note Functions without trailing parentheses, at the start of the parent page, lists these four together with current_date (which has no optional precision parameter) and calls out their exceptional status. There is no need, therefore, to document each "current date-time moment" function individually.

The following anonymous PL/pgSQL block tests that the return data types are as expected.

do $body$
begin
  assert
    -- date
        pg_typeof(current_date)            ::text = 'date'                        -- start of transaction

    -- plain time
    and pg_typeof(localtime)               ::text = 'time without time zone'      -- start of transaction

    -- timetz
    and pg_typeof(current_time)            ::text = 'time with time zone'         -- start of transaction

    -- plain timestamp
    and pg_typeof(localtimestamp)          ::text = 'timestamp without time zone' -- start of transaction

    -- timestamptz
    and pg_typeof(transaction_timestamp()) ::text = 'timestamp with time zone'    -- start of transaction
    and pg_typeof(now())                   ::text = 'timestamp with time zone'    -- start of transaction
    and pg_typeof(current_timestamp)       ::text = 'timestamp with time zone'    -- start of transaction
    and pg_typeof(statement_timestamp())   ::text = 'timestamp with time zone'    -- start of statement
    and pg_typeof(clock_timestamp())       ::text = 'timestamp with time zone'    -- instantaneous
    ,
  'assert failed';
end;
$body$;

It finishes without error showing that all the assertions hold.

There are five moment data types. (This number includes timetz. But the PostgreSQL documentation, and therefore the YSQL documentation, recommend against using this. See this note on the "Date and time data types" major section's main page.) So, with three kinds of moment, you might expect every cell in the implied five-by-three matrix to be filled with a differently named function. However, there are only nine differently named functions (not counting timeofday()). This reflects two facts:

  • Only the functions that return a timestamptz value have "start of statement" and "instantaneous" variants.

  • There are three differently named "start of transaction" functions that return a timestamptz value: transaction_timestamp(), now(), and current_timestamp.

Aim to use only 'transaction_timestamp()', 'statement_timestamp()', and 'clock_timestamp()' to get the current moment.

Modern applications almost invariably must work globally—in other words, they must be timezone-aware. When, as is recommended, timetz is avoided, the only timezone-aware moment data type is timestamptz. Therefore, when you need to get any kind of current moment, you must use a function that returns this data type. And the set transaction_timestamp(), statement_timestamp(), and clock_timestamp() does indeed cover all three kinds of moment for this data type.

The functions now() and current_timestamp both have identical semantics to transaction_timestamp(). But the latter has the name that best expresses its purpose. Yugabyte therefore recommends that you avoid using now() or current_timestamp.

Notice that, while date might seem appealing because facts like "hire date" are conventionally recorded without a time of day component, different locations around the globe can have different dates at the same absolute moment. (See the section Absolute time and the UTC Time Standard.) So it's better to record even "hire date" as a timestamptz value. If you need to display this as a plain date, then you can convert it to a plain timestamp value in the desired timezone (see the section function timezone() | at time zone operator); and then you can typecast this value to a date value (see the subsection plain timestamp to date in the section "Typecasting between values of different date-time datatypes").

The semantics of "start of transaction", "start of statement", and "instantaneous"

  • "Start of transaction" means literally this. The function transaction_timestamp() implements this semantics. It returns the same value on successive invocations within the same transaction.

  • "Start of statement" means literally this. The function statement_timestamp() implements this semantics. It returns the same value on successive invocations only within the same SQL statement. Invocations in successive different SQL statements within the same transaction will report different values for each statement.

  • "Instantaneous" means what a wall clock reads at the instant of invocation irrespective of progress during an explicitly started transaction and during individual SQL statement execution. The function clock_timestamp() implements this semantics.

Notice that applications typically run with "autocommit" set to "on". In the rare case that a single SQL statement is issued in this mode without surrounding transaction control calls, then invocations of transaction_timestamp() and statement_timestamp() will return the same value. Try this:

-- self-doc
\set AUTOCOMMIT 'on'

select
  ''''''''||transaction_timestamp() ::text||''''''''||'::timestamptz' as txn,
  ''''''''||statement_timestamp()   ::text||''''''''||'::timestamptz' as stm
\gset r_

select
  (
    extract(epoch from :r_stm) =
    extract(epoch from :r_txn)
  )::text as "txn and stmt times are identical";

The result is true.

Usually, when an application makes only pure SQL calls (and no PL/pgSQL calls), business transaction atomicity is implemented like this:

  • Execute the set transaction statement before executing two or several data-changing calls.
  • Then execute commit (or rollback if an error occurs) after these data-changing calls.

In this case, there is a clear distinction between the "start of transaction" moment and subsequent "start of statement" moments. Try this:

-- self-doc
\set AUTOCOMMIT 'on'

start transaction;

\! sleep 5

select
  ''''''''||transaction_timestamp() ::text||''''''''||'::timestamptz' as txn,
  ''''''''||statement_timestamp()   ::text||''''''''||'::timestamptz' as stm
\gset r1_

\! sleep 5

select
  ''''''''||transaction_timestamp() ::text||''''''''||'::timestamptz' as txn,
  ''''''''||statement_timestamp()   ::text||''''''''||'::timestamptz' as stm
\gset r2_

commit;

Confirm that transaction_timestamp() returns the same value throughout the transaction:

select
  (
    extract(epoch from :r2_txn) =
    extract(epoch from :r2_txn)
  )::text as "txn times are identical";

The result is true.

Confirm that the first invocation of statement_timestamp() returns a value that's about 5 seconds (the sleep time) after the value that transaction_timestamp() returns:

select to_char(
  (
    extract(epoch from :r1_stm) -
    extract(epoch from :r1_txn)
  ),
  '9.999') as "stmt #1 time minus txn time";

You'll see that "stmt #1 time minus txn time" differs from 5.0 seconds by maybe as much as 0.03 seconds. This reflects the inevitable time that it takes for the client-server round trips and for the \! metacommand to launch a new shell and invoke the operating system sleep utility. (psql and therefore ysqlsh have no intrinsic sleep function. And if you use pg_sleep(), then you complicate the discussion because this requires a top-level SQL call of its own.)

Notice that this observation confirms that it is the start transaction explicit call that determines the moment at which the transaction starts—and not the start moment of the first subsequent database call within that started transaction.

Confirm that the second invocation of statement_timestamp() returns a value that's about 10 seconds (the sum of the two sleep times) after the value that transaction_timestamp() returns:

select to_char(
  (
    extract(epoch from :r2_stm) -
    extract(epoch from :r1_txn)
  ),
  '99.999') as "stmt #2 time minus txn time";

You'll see "stmt #2 time minus txn time" differs from 10.0 seconds by maybe as much as 0.03 seconds.

Now that the difference in semantics between transaction_timestamp() and statement_timestamp() is clear, it's sufficient to demonstrate the difference in semantics between statement_timestamp() and clock_timestamp() within a single statement. Try this:

-- self-doc
\set AUTOCOMMIT 'on'

select
  ''''''''||statement_timestamp()   ::text||''''''''||'::timestamptz' as stm_1,
  ''''''''||clock_timestamp()       ::text||''''''''||'::timestamptz' as clk_1,
  ''''''''||pg_sleep(5)             ::text||''''''''||'::timestamptz' as dummy,
  ''''''''||statement_timestamp()   ::text||''''''''||'::timestamptz' as stm_2,
  ''''''''||clock_timestamp()       ::text||''''''''||'::timestamptz' as clk_2
\gset r_

select
  (
    extract(epoch from :r_stm_1) =
    extract(epoch from :r_stm_1)
  )::text as "stm_1 time and stm_2 times are identical";

The result is true.

Now check how the values returned by clock_timestamp() differ as the statement executes:

select to_char(
  (
    extract(epoch from :r_clk_2) -
    extract(epoch from :r_clk_1)
  ),
  '9.999') as "clk_2 time minus clk_1 time";

You'll see that "clk_2 time minus clk_1 time" differs from 5.0 seconds by maybe just a couple of milliseconds. The smaller noise discrepancies in this test than in the previous tests reflect the fact that all the measurements are made within the server-side execution of a single top-level call.

Don't use the special manifest constant 'now'.

And, by extension, don't use the related special manifest constants 'today', 'tomorrow', and 'yesterday'. (See the section Special date-time manifest constants for more discussion of the advisability of using these, and other, special date-time manifest constants.)

Try this:

select (now() = 'now'::timestamptz)::text as "now() = 'now'";

The result is true. Now try this:

deallocate all;
prepare stmt as
select to_char(
  (
    extract(epoch from now()) -
    extract(epoch from 'now'::timestamptz)
  ),
  '99.999') as "now() [immediate] - 'now' [at prepare time]";

\! sleep 5
execute stmt;

\! sleep 5
execute stmt;

You'll see that "now() [immediate] - 'now' [at prepare time]" differs from 5.0 seconds, and then from 10.0 seconds, by up to about a few centiseconds from the two successive execute invocations. Of course, the name of the column alias was chosen to indicate what's going on. The expression 'now'::timestamptz means "evaluate the function now() just once, at 'compile time', and record the return value as a constant". You can produce a similar dramatic demonstration effect like this:

drop table if exists t cascade;
create table t(k int primary key, t_at_table_creation_time timestamptz default 'now', t_at_insert_time timestamptz default now());
\! sleep 5
insert into t(k) values(1);

select to_char(
  (
    extract(epoch from t_at_insert_time) -
    extract(epoch from t_at_table_creation_time)
  ),
  '99.999') as "t_at_insert_time - t_at_table_creation_time"
from t
where k = 1;

Once again, the spelling of the names is the clue to understanding. You might see, in this test, that "t_at_insert_time - t_at_table_creation_time" differs from 5.0 seconds by as much as 0.1 seconds because the table creation process takes some time to complete after the value of 'now'::timestamptz is frozen.

It's difficult to see how the semantics of the expression 'now'::timestamptz could be useful. But if you understand the meaning of this expression and are convinced that your use case needs this, then you can decide to use it. But you should help readers of your code with a careful explanation of your purpose and how your code meets this goal.

Consider user-defined functions rather than 'today', 'tomorrow', and 'yesterday'

(You can simply use the built-in function now() rather than the special constant 'now'.)

The PostgreSQL documentation defines the meanings of these three constants thus:

  • 'today': midnight (00:00) today

  • 'tomorrow': midnight (00:00) tomorrow

  • 'yesterday': midnight (00:00) yesterday

Consider these alternatives for the special constants:

-- 'today'
drop function if exists today() cascade;
create function today()
  returns timestamptz
  volatile
  language plpgsql
as $body$
begin
  return date_trunc('day', clock_timestamp());
end;
$body$;

-- 'tomorrow'
drop function if exists tomorrow() cascade;
create function tomorrow()
  returns timestamptz
  volatile
  language plpgsql
as $body$
begin
  return today() + make_interval(days=>1);
end;
$body$;

-- 'yesterday'
drop function if exists yesterday() cascade;
create function yesterday()
  returns timestamptz
  volatile
  language plpgsql
as $body$
begin
  return today() - make_interval(days=>1);
end;
$body$;

set timezone = 'UTC';
select
  today()     as "today()",
  tomorrow()  as "tomorrow()",
  yesterday() as "yesterday()";

Of course, the result will depend on when you do this. Here's the result when it was done at about 20:00 local time on 30-Sep-2021 in the America/Los_Angeles timezone.

        today()         |       tomorrow()       |      yesterday()       
------------------------+------------------------+------------------------
 2021-10-01 00:00:00+00 | 2021-10-02 00:00:00+00 | 2021-09-30 00:00:00+00
    • The semantics of "start of transaction", "start of statement", and "instantaneous"
    • Consider user-defined functions rather than 'today', 'tomorrow', and 'yesterday'
Ask our community
  • Slack
  • Github
  • Forum
  • StackOverflow
Yugabyte
Contact Us
Copyright © 2017-2022 Yugabyte, Inc. All rights reserved.